11空间几何体_第1页
11空间几何体_第2页
11空间几何体_第3页
11空间几何体_第4页
11空间几何体_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、岳阳市十五中岳阳市十五中 付荣兵付荣兵知识探究(一):知识探究(一):空间几何体的类型空间几何体的类型 思考思考1 1:在我们周围存在着各种各样的物在我们周围存在着各种各样的物体,它们都占据着空间的一部分体,它们都占据着空间的一部分. .如果我如果我们只考虑这些物体的形状和大小,而不们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的考虑其他因素,那么由这些抽象出来的空间图形就叫做空间图形就叫做空间几何体空间几何体. .思考思考2 2:观察下列图片,你知道这图片在观察下列图片,你知道这图片在几何中分别叫什么名称吗?几何中分别叫什么名称吗?思考思考3 3:如果将这些几何体进行适当

2、分类,如果将这些几何体进行适当分类,你认为可以分成哪几种类型?你认为可以分成哪几种类型?思考思考4 4:图(图(2 2)()(5 5)()(7 7)()(9 9)()(1313)(1414)()(1515)()(1616)有何共同特点?这)有何共同特点?这些几何体可以统一叫什么名称?些几何体可以统一叫什么名称?思考思考5 5:图(图(1 1)()(3 3)()(4 4)()(6 6)()(8 8)(1010)()(1111)()(1212)有何共同特点?这)有何共同特点?这些几何体可以统一叫什么名称?些几何体可以统一叫什么名称?多面体多面体旋转体旋转体思考思考6 6:一般地,怎样定义多面体?围

3、一般地,怎样定义多面体?围成多面体的各个多边形,相邻两个多边成多面体的各个多边形,相邻两个多边形的公共边,以及这些公共边的公共顶形的公共边,以及这些公共边的公共顶点分别叫什么名称?点分别叫什么名称?面面顶点顶点棱由若干个平面由若干个平面多边形围成的多边形围成的几何体叫做几何体叫做多多面体面体 .思考思考7 7:一般地,怎样定义旋转体?一般地,怎样定义旋转体?轴 由一个平面图形绕它所在平面内的由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体一条定直线旋转所形成的封闭几何体叫做叫做旋转体旋转体 知识探究(二):知识探究(二):棱柱的结构特征棱柱的结构特征 思考思考1 1:我们把下面的

4、多面体取名为棱我们把下面的多面体取名为棱柱,你能说一说棱柱的结构有那些特征柱,你能说一说棱柱的结构有那些特征吗?据此你能给棱柱下一个定义吗?吗?据此你能给棱柱下一个定义吗? 有两个面互相平行,其余各面都是四边有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边都互相形,每相邻两个四边形的公共边都互相平行,由这些面围成的多面体叫做平行,由这些面围成的多面体叫做棱柱棱柱. . 思考思考2 2:为了研究方便,我们把棱柱中两个互为了研究方便,我们把棱柱中两个互相平行的面叫做棱柱的相平行的面叫做棱柱的底面底面,其余各面叫做,其余各面叫做棱柱的棱柱的侧面侧面,相邻侧面的公共边叫做棱柱的,相邻侧面

5、的公共边叫做棱柱的侧棱侧棱,侧面与底面的公共顶点叫做棱柱的,侧面与底面的公共顶点叫做棱柱的顶顶点点. .你能指出下面棱柱的底面、侧面、侧棱、你能指出下面棱柱的底面、侧面、侧棱、顶点吗?顶点吗?侧面侧面顶点顶点侧棱底面底面思考思考3 3:下列多面体都是棱柱吗?如何在下列多面体都是棱柱吗?如何在名称上区分这些棱柱?如何用符号表示?名称上区分这些棱柱?如何用符号表示?ABCDEA1B1C1D1E1ABCA1B1C1ABCDA1B1C1D1ABCDA1B1C1D1思考思考4 4:棱柱上、下两个底面的形状大小棱柱上、下两个底面的形状大小如何?各侧面的形状如何?如何?各侧面的形状如何?两底面是全等的多边形

6、两底面是全等的多边形,各侧面都是平行四边形各侧面都是平行四边形思考思考5 5:有两个面互相平行,其余各面都有两个面互相平行,其余各面都是平行四边形的多面体一定是棱柱吗?是平行四边形的多面体一定是棱柱吗?思考思考6 6:一个棱柱至少有几个侧面?一个一个棱柱至少有几个侧面?一个N N棱柱分别有多少个底面和侧面?有多少棱柱分别有多少个底面和侧面?有多少条侧棱?有多少个顶点?条侧棱?有多少个顶点?知识探究(三):知识探究(三): 棱锥的结构特征棱锥的结构特征 思考思考1 1:我们把下面的多面体取名为棱我们把下面的多面体取名为棱锥,你能说一说棱锥的结构有那些特征锥,你能说一说棱锥的结构有那些特征吗?据此

7、你能给棱锥下一个定义吗?吗?据此你能给棱锥下一个定义吗?有一个面是多边形,其余各面都是有有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面围一个公共顶点的三角形,由这些面围成的多面体叫做成的多面体叫做棱锥棱锥.思考思考2 2:参照棱柱的说法,棱锥的底面、参照棱柱的说法,棱锥的底面、侧面、侧棱、顶点分别是什么含义?侧面、侧棱、顶点分别是什么含义?侧面侧面顶点顶点侧棱底面底面 多边形面叫做棱锥的多边形面叫做棱锥的底面底面,有公共顶点的各三角,有公共顶点的各三角形面叫做棱锥的形面叫做棱锥的侧面侧面,相邻侧面的公共边叫做棱,相邻侧面的公共边叫做棱锥的锥的侧棱侧棱,各侧面的公共顶点叫做棱锥的

8、,各侧面的公共顶点叫做棱锥的顶点顶点. . 思考思考3 3:下列多面体都是棱锥吗?如何在下列多面体都是棱锥吗?如何在名称上区分这些棱锥?如何用符号表示?名称上区分这些棱锥?如何用符号表示? ABCSSABCDSABCEFD思考思考4 4:一个棱锥至少有几个面?一个一个棱锥至少有几个面?一个N N棱锥有分别有多少个底面和侧面?有多棱锥有分别有多少个底面和侧面?有多少条侧棱?有多少个顶点?少条侧棱?有多少个顶点? 至少有至少有4 4个面;个面;1 1个底面,个底面,N N个侧个侧面,面,N N条侧棱,条侧棱,1 1个顶点个顶点. . 思考思考5 5:用一个平行于棱锥底面的平面去用一个平行于棱锥底面

9、的平面去截棱锥,截面与底面的形状关系如何?截棱锥,截面与底面的形状关系如何?相似多边形相似多边形理论迁移理论迁移 例例1 1 如图,截面如图,截面BCEFBCEF将长方体分割成将长方体分割成两部分,这两部分是否为棱柱?两部分,这两部分是否为棱柱? ABCDA1B1C1D1EF 例例2 2 一个三棱柱可以分割成几个三棱一个三棱柱可以分割成几个三棱锥?锥?ACA1BB1C1A1BB1C1AA1BC1ACBC1知识探究(一):知识探究(一):棱台的结构特征棱台的结构特征 思考思考1 1:用一个平行于棱锥底面的平面用一个平行于棱锥底面的平面去截棱锥,截面与底面之间的部分形成去截棱锥,截面与底面之间的部

10、分形成另一个多面体,这样的多面体叫做另一个多面体,这样的多面体叫做棱台棱台. .那么棱台有哪些结构特征?那么棱台有哪些结构特征? 有两个面是互相平行的相有两个面是互相平行的相似多边形,其余各面都是似多边形,其余各面都是梯形,每相邻两个梯形的梯形,每相邻两个梯形的公共腰的延长线共点公共腰的延长线共点.思考思考2 2:参照棱柱的说法,棱台的底面、参照棱柱的说法,棱台的底面、侧面、侧棱、顶点分别是什么含义?侧面、侧棱、顶点分别是什么含义? 原棱锥的底面和截面分别叫做棱台的原棱锥的底面和截面分别叫做棱台的下底面和下底面和上底面上底面,其余各面叫做棱台的,其余各面叫做棱台的侧面侧面,相邻侧面的,相邻侧面

11、的公共边叫做棱台的公共边叫做棱台的侧棱,侧棱,侧面与底面的公共顶点侧面与底面的公共顶点叫做棱台的叫做棱台的顶点顶点. 侧面侧面上底面上底面侧棱下底面下底面顶点顶点思考思考3 3:下列多面体一定是棱台吗?如何下列多面体一定是棱台吗?如何判断?判断?思考思考4 4:三棱台、四棱台、五棱台、三棱台、四棱台、五棱台、分别是什么含义?分别是什么含义?知识探究(二):知识探究(二):圆柱的结构特征圆柱的结构特征 思考思考1 1:如图所示的空间几何体叫做如图所示的空间几何体叫做圆圆柱,柱,那么圆柱是怎样形成的呢?那么圆柱是怎样形成的呢?以矩形的一边所在直线为旋转轴,其以矩形的一边所在直线为旋转轴,其余三边旋

12、转形成的面所围成的旋转体余三边旋转形成的面所围成的旋转体.思考思考2 2:在圆柱的形成中,旋转轴叫做圆柱的在圆柱的形成中,旋转轴叫做圆柱的轴轴,垂直于轴的边旋转而成的圆面叫做圆柱的垂直于轴的边旋转而成的圆面叫做圆柱的底面底面,平行于轴的边旋转而成的曲面叫做圆柱的平行于轴的边旋转而成的曲面叫做圆柱的侧面侧面,平行于轴的边在旋转中的任何位置叫做圆柱侧面平行于轴的边在旋转中的任何位置叫做圆柱侧面的的母线母线. . 你能结合图形正确理解这些概念吗?你能结合图形正确理解这些概念吗? 侧面侧面轴轴母线底面底面母线思考思考3 3:平行于圆柱底面的截面,经过平行于圆柱底面的截面,经过圆柱任意两条母线的截面分别

13、是什么图圆柱任意两条母线的截面分别是什么图形?形?思考思考4 4:经过圆柱的轴的截面称为轴截面,经过圆柱的轴的截面称为轴截面,你能说出圆柱的轴截面有哪些基本特征你能说出圆柱的轴截面有哪些基本特征吗?吗? 知识探究(三):知识探究(三):圆锥的结构特征圆锥的结构特征 思考思考1 1:将一个直角三角形以它的一条直将一个直角三角形以它的一条直角边为轴旋转一周,那么其余两边旋转角边为轴旋转一周,那么其余两边旋转形成的面所围成的旋转体是一个什么样形成的面所围成的旋转体是一个什么样的空间图形?的空间图形?思考思考2 2:以直角三角形的一条直角边所在以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成

14、的面直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做所围成的旋转体叫做圆锥,圆锥,那么如何定那么如何定义圆锥的轴、底面、侧面、母线?义圆锥的轴、底面、侧面、母线? 旋转轴叫做圆锥的旋转轴叫做圆锥的轴轴,垂直于轴的边旋转,垂直于轴的边旋转而成的圆面叫做圆锥的而成的圆面叫做圆锥的底面底面,斜边旋转而,斜边旋转而成的曲面叫做圆锥的成的曲面叫做圆锥的侧面侧面,斜边在旋转中,斜边在旋转中的任何位置叫做圆锥侧面的的任何位置叫做圆锥侧面的母线母线. . 侧面侧面顶点顶点母线底面底面母线轴思考思考3 3:经过圆锥任意两条母线的截面是经过圆锥任意两条母线的截面是什么图形?什么图形?思考思考4 4:经过圆锥的

15、轴的截面称为经过圆锥的轴的截面称为轴截面轴截面,你能说出圆锥的轴截面有哪些基本特征你能说出圆锥的轴截面有哪些基本特征吗?吗?思考思考1:1:用一个平行于圆锥底面的平面去用一个平行于圆锥底面的平面去截圆锥,截面与底面之间的部分叫做截圆锥,截面与底面之间的部分叫做圆圆台台. .圆台可以由什么平面图形旋转而形成?圆台可以由什么平面图形旋转而形成?知识探究(四):知识探究(四):圆台的结构特征圆台的结构特征 思考思考2:2:与圆柱和圆锥一样,圆台也有轴、与圆柱和圆锥一样,圆台也有轴、底面、侧面、母线,它们的含义分别如底面、侧面、母线,它们的含义分别如何?何? 侧面侧面上底面上底面下底面下底面母线轴思考

16、思考3:3:经过圆台任意两条母线的截面是经过圆台任意两条母线的截面是什么图形?轴截面有哪些基本特征?什么图形?轴截面有哪些基本特征? AB图1AB图2AB图3 例例1 1 将下列平面图形绕直线将下列平面图形绕直线ABAB旋转旋转一周,所得的几何体分别是什么?一周,所得的几何体分别是什么?理论迁移理论迁移 例例2 2 在直角三角形在直角三角形ABCABC中,已知中,已知AC=2AC=2,BC= BC= , ,以直线,以直线ACAC为轴将为轴将ABCABC旋转一周得到一个圆锥,求经过该圆锥旋转一周得到一个圆锥,求经过该圆锥任意两条母线的截面三角形的面积的最任意两条母线的截面三角形的面积的最大值大值

17、. .2 390CoABCABCD思考思考2:2:从旋转的角度分析,球是由什么从旋转的角度分析,球是由什么图形绕哪条直线旋转而成的?图形绕哪条直线旋转而成的?以半圆的直径所在直线为旋转轴,半圆以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做面旋转一周形成的旋转体叫做球体球体,简,简称称球球. .思考思考3:3:半圆的圆心、半径、直径,在球半圆的圆心、半径、直径,在球体中分别叫做球的体中分别叫做球的球心球心、球的、球的半径半径、球、球的的直径直径,球的外表面叫做,球的外表面叫做球面球面. .那么球的那么球的半径还可怎样理解?半径还可怎样理解?O O直径直径半径半径球心球心 球面上的点

18、到球面上的点到球心的距离球心的距离 思考思考4:4:用一个平面去截一个球,截面是用一个平面去截一个球,截面是什么图形?什么图形?O思考思考5:5:设球的半径为设球的半径为R R,截面圆半径为,截面圆半径为r r,球心与截面圆圆心的距离为球心与截面圆圆心的距离为d d,则,则R R、r r、d d三者之间的关系如何?三者之间的关系如何?POORrd22dRr8cm8cm 例例4 4 已知球的半径为已知球的半径为10cm10cm,一个截,一个截面圆的面积是面圆的面积是 cmcm2 2,则球心到截面圆,则球心到截面圆圆心的距离是圆心的距离是 . .36POORrd(一层练习) 1、比较棱柱、棱锥、棱

19、台的结构特征,填写下表:结构特征棱 柱棱 锥棱 台定 义有两个面互相平行,其余有两个面互相平行,其余各面都是四边形,并且每各面都是四边形,并且每相邻两个面的公共边都平相邻两个面的公共边都平行行有一个面是多边形,其余各有一个面是多边形,其余各面都是有一个公共顶点的三面都是有一个公共顶点的三角形角形用一个平行于棱锥底面用一个平行于棱锥底面的平面去截棱锥的平面去截棱锥,底面底面与截面之间的部分是棱与截面之间的部分是棱台台分 类按底面边数分:三棱柱、四棱柱、五棱柱按侧棱垂直底面分:直棱柱、斜棱柱按底面边数分三棱锥、四棱锥、五棱锥按底面边数分三棱台、四棱台、五棱台 底 面两底面是全等的多边形 多 边 形两底面是相似的多边形 侧 面平行四边形 三 角 形 梯 形 侧 棱平行且相等相交于顶点延长线交于一点平行底面的截面与两底面是全等的多边形与两底面是相似的多

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论