




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、毕业论文论文题目:常微分方程在数学建模中的应用 姓 名: 学科专业:指导教师: 完成时间:常微分方程是数学理论(特别是微积分)联系实际的重要工具,它不仅与儿 何学、力学、电子技术、自动控制、星际航行、甚至和化学、生物学、农业以及 经济学都有着密切的联系。本文结合实践背景,建立数学模型,并利用所得结果 去解释某些实际问题。关键字 常微分方程、人口预测模型、市场价格模型、混合溶液的数学模 型、震动模型第一章 人口预测模型第二章市场价格模型第三章混合溶液的数学模型第四章震动模型绪论当我们描述实际对象的某些特性随时间(或空间)而演变的过程、分析它的 变化规律、预测它的未来性态,研究它的控制手段时,通常
2、要建立对象的动态模 型。建模时首先要根据建模U的和对问题的具体分析作出简化假设,然后按照对 象内在的或可以类比的其他对象的规律列出微分方程,求出方程的解并将结果翻 译回实际对象,就可以进行描述、分析、预测或控制了。事实上在微分方程课程中,解所谓应用题时我们遇到简单的建立动态模型问 题,例如“一质量为m的物体自高h处自由下落,初速度是零,设阻力与下落速 度的平方成正比,比例系数为k,求下落速度随时间的变化规律。” 乂如“容器 内有盐水100L,内含盐10kg,令以3L/min的速度从一管放进净水,以2L/min的 速度从另一管抽出盐水,设容器内盐水浓度始终是均匀的,求容器内含盐量随时 间变化规律
3、。”本文讨论的是常微分方程在数学建模中的应用。第一章人口预测模型由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得 到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很 多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等 诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简 化,建立比较粗糙的模型,再逐步修改,得到较完善的模型.例1(马尔萨斯(Malthus)模型)英国人口统计学家马尔萨斯(1766-1834) 在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一 个常数,于1789年在人口原理一书中
4、提出了闻名于世的马尔萨斯人口模型, 他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差) 是常数,即单位时间内人口的增长量与人口成正比,比例系数设为,在此假设下, 推导并求解人口随时间变化的数学模型.解 设时亥I打的人口为N,把N(/)当作连续、可微函数处理(因人口总数 很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在/到 / + A/时间段内,人口的增长量为N(t + A/) - N(t) =,并设f =心时刻的人口为于是= %这就是马尔萨斯人口模型,用分离变量法易求出其解为此式表明人口以指数规律随时间无限增长.模型检验:据估计1961年地球上的人口总
5、数为3.06xlO9,而在以后7年中,人口总数以每年2%的速度增长,这样= 1961 ,=3.06x109 , r = 0.02,于是N(t) = 3.O6xlO9eo<,2(,-,96l>.这个公式非常准确地反映了在17001961年间世界人口总数.因为,这期间 地球上的人口大约每35年翻一番,而上式断定34. 6年增加一倍(请读者证明这 一点).但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较, 却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发 现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人 口.如果地球
6、表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得 互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改.例2 (逻辑Logistic模型)马尔萨斯模型为什么不能预测未来的人口呢? 这主要是地球上的各种资源只能供一定数量的人生活,随着人口的增加,自然资 源环境条件等因素对人口增长的限制作用越来越显著,如果当人口较少时,人口 的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率 就要随人口的增加而减小.因此,应对马尔萨斯模型中关于净增长率为常数的假 设进行修改.1838年,荷兰生物数学家韦尔侯斯特(Verhulst)引入常数N皿,用来表示自 然环境条件所能
7、容许的最大人口数(一般说来,一个国家工业化程度越高,它的生 活空间就越大,食物就越多,从而就越大),并假设将增长率等于+ -罟片, 即净增长率随着N的增加而减小,当Nt Nnt时,净增长率趋于零,按此假定建立人口预测模型.解山韦尔侯斯特假定,马尔萨斯模型应改为dNN 击2丿N(2 = N°上式就是逻辑模型,该方程可分离变量,其解为,下面,我们对模型作一简要分析.(1 )当f TOO, N(f) T N,n ,即无论人口的初值如何,人口总数趋向于极限值NQN 0,这说明N(t)是时间t的单调递dN(2)当OvN 心时,-d/增函数;咗卜冷所以当心时,护。普单增;当川主时,密0,哎单减,
8、即人口增长率空由增变减,在业处最大,2d 厂drdr2也就是说在人口总数达到极限值一半以前是加速生长期,过这一点后,生长的速 率逐渐变小,并且迟早会达到零,这是减速生长期;(4)用该模型检验美国从1790年到1950年的人口,发现模型计算的结果 与实际人口在1930年以前都非常吻合,自从1930年以后,误差愈来愈大,一个明 显的原因是在20世纪60年代美国的实际人口数已经突破了 20世纪初所设的极 限人口.曲此可见该模型的缺点之一是不易确定,事实上,随着一个国家经济 的腾飞,它所拥有的食物就越丰富,N”的值也就越大;(5)用逻辑模型来预测世界未来人口总数.某生物学家估计,厂= 0.029, 乂
9、当 人口总数为3.06x10°时,人口每年以2%的速率增长,山逻辑模型得丄 =N dr I Nj即o.O2 = O.O29(i-竺凹,N皿丿从而得Nm =9.86xl0即世界人口总数极限值近100亿.值得说明的是:人也是一种生物,因此,上面关于人口模型的讨论,原则上也 可以用于在自然环境下单一物种生存着的其他生物,如森林中的树木、池塘中的 鱼等,逻辑模型有着广泛的应用.第二章市场价格模型对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场 价格能促使商品的供给与需求相等(这样的价格称为(静态)均衡价格)也就是说, 如果不考虑商品价格形成的动态过程,那么商品的市场价格应能
10、保证市场的供需 平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的, 应是随时间不断变化的动态过程.例3试建立描述市场价格形成的动态过程的数学模型解 假设在某一时刻/,商品的价格为“,它与该商品的均衡价格间有差 别,此时,存在供需差,此供需差促使价格变动.对新的价格,乂有新的供需差,如 此不断调节,就构成市场价格形成的动态过程,假设价格p的变化率坐与需求dr和供给之差成正比,并记f(p,门为需求函数,g()为供给函数(为参数),于是p(0)=几,其中几为商品在时刻的价格,a为正常数.若设 /(/Ar) = -ap + b , g(p) = cp + ,则上式变为牛=-a(a
11、 + c)p + a(b - ),“(0)=內,其中心人c,d均为正常数,其解为下面对所得结果进行讨论:(1) 设万为静态均衡价格,则其应满足/(P") - g(p) = o,4即一 a p + b = c p + d、于是得鼻=口,从而价格函数p可写为a+ c皿)=(00-万)严5+万,令r t*q,取极限得lim p(t) = p/>4-X这说明,市场价格逐步趋于均衡价格.乂若初始价格P占,则动态价格就维持在均衡价格万上,整个动态过程就化为静态过程;(2)由于半-几)a(" + c)rg",at所以,当Po >卩时,<0, p单调下降向卩靠拢
12、:当Po < p时,>0, p d/d/单调增加向万靠拢.这说明:初始价格高于均衡价格时,动态价格就要逐步降低, 且逐步靠近均衡价格;否则,动态价格就要逐步升高.因此,式在一定程度上反 映了价格影响需求与供给,而需求与供给反过来乂影响价格的动态过程,并指出 了动态价格逐步向均衡价格靠拢的变化趋势.第三章混合溶液的数学模型例4设一容器内原有100L盐,内含有盐10kg,现以3L/min的速度注入质量 浓度为0. 01kg/L的淡盐水,同时以2L/min的速度抽出混合均匀的盐水,求容器内 盐量变化的数学模型.解 设,时刻容器内的盐量为x(r)kg,考虑/到/ + d/时间内容器中盐的变
13、化情况,在/时间内容器中盐的改变量=注入的盐水中所含盐量一抽出的盐水中所含盐量 容器内盐的改变量为山,注入的盐水中所含盐量为0.01x3d/, I时刻容器内溶液的质量浓度为一,假设/到F + dF时间内容器内溶液的质量浓度不 100+(3-2)/变(事实上,容器内的洛液质量浓度时刻在变,山于d/时间很短,可以这样看)于是抽出的盐水中所含盐量为册莎如,这样即可列出方程cLv = 0.03d/-2A-d/>100 + /2x100 + /乂因为/ = o时,容器内有盐10kg,于是得该问题的数学模型为dx + ck2x100 + /= 0.03,x(0) = 10,这是一阶非齐次线性方程的初
14、值问题,其解为x(r)= o.oi(ioo+r)+9xl04(100+77下面对该问题进行一下简单的讨论,山上式不难发现:/时刻容器内洛液的质 量浓度为,、 M) 八小 9xl04p(f) = =0.01 +r,100+r(100+r)3且当时,m)to.oi,即长时间地进行上述稀释过程,容器内盐水的质量 浓度将趋于注入溶液的质量浓度.溶液混合问题的更一般的提法是:设有一容器装有某种质量浓度的溶液,以 流量K注入质量浓度为C勺溶液(指同一种类溶液,只是质量浓度不同),假定 溶液立即被搅匀,并以匕的流量流出这种混合洛液,试建立容器中质量浓度与时 间的数学模型.首先设容器中溶质的质量为兀,原来的初
15、始质量为X。, t二0时溶液的体 积为匕,在d/时间内,容器内溶质的改变量等于流入溶质的数量减去流出溶质的 数量,即dx = CjVjdr 一 C2V2dt,其中C是流入溶液的质量浓度,C?为f时刻容器中溶液的质量浓 度,时花,于是,有混合溶液的数学模型沪CMc”2x(0) = x0 该模型不仅适用于液体的混合,而且还适用于讨论气体的混合.第四章振动模型振动是生活与工程中的常见现象.研究振动规律有着极其重要的意义.在自 然界中,许多振动现象都可以抽象为下述振动问题.例5设有一个弹簧,它的上端固定,下端挂一个质量为加的物体,试研究其 振动规律.解假设(1)物体的平衡位置位于坐标原点,并取x轴的正
16、向铅直向下(见图4). 物体的平衡位置指物体处于静止状态时的位置.此时,作用在物体上的重力与弹 性力大小相等,方向相反;(2)在一定的初始位移x0及初始速度下,物体离开平衡位置,并在平衡位 置附近作没有摇摆的上下振动;(3)物体在I时刻的位置坐标为x = A(r),即t时刻物体偏离平衡位置的位移;(4)在振动过程中,受阻力作用.阻力的大小与物体速度成正比,阻力的方向 总是与速度方向相反,因此阻力为-力竺,力为阻尼系数;d/于一碍+蚀,(5)当质点有位移x(/)时,假设所受的弹簧恢复力是与位移成正比的,而恢 复力的方向总是指向平衡位置,也就是总与偏离平衡位置的位移方向相反,因此 所受弹簧恢复力为
17、-匕,其中k为劲度系数;(6)在振动过程中受外力/的作 用.在上述假设下,根据牛顿第二定律得这就是该物体的强迫振动方程.由于方程中,/的具体形式没有给出,所以,不能对式直接求解.下面我们分四种情形对其进行讨论.1. 无阻尼自由振动在这种情况下,假定物体在振动过程中,既无阻力、乂不受外力 作用此时方程变为令- = co2,方程变为 m特征方程为才 +co2 =0,特征根为入乍=±i6W,m4- + kx=0 ,dr2So,通解为x = Cj sin cot + C2 coscot ,coscotJ =sin cot + lJc:+G或将其写为x = ylcf+cl=A(cos?sin
18、cot + sin (jpeoscot)=Asin(cot + cp)H111 A = Jc;+cf ,皿炉=,°,COS0= J 一JU + c;Jc:+c;这就是说,无阻尼自由振动的振幅A =、疋,频率。=计均为常数.2. 有阻尼自曲振动在该种情况下,考虑物体所受到的阻力,不考虑物体所受的外力.此时,方程变为d2x f d.v r 小 m - + h + Ax = 0,dr drkh令- = 2J,方程变为mmd2.r - dx 丁 八+ 2 J + 6TX = 0,dL dr特征方程为/+2嬴+ /=0,特征根人.2=-HQ-/ 根据5与©的关系,乂分为如下三种情形:
19、(1) 大阻尼情形,5>0特征根为二不等实根,通解为工=C e(-s+Jy-e? ” + c &(-5+V 夕一e,)1(2) 临界阻尼情形,j =特征根为重根,通解为x = (G + C2z)e"*这两种情形,山于阻尼比较大,都不发生振动.当有一初始扰动以后,质点慢 慢回到平衡位置,位移随时间/的变化规律分别如图5和图6所示.x(3) 小阻尼情形,5特征根为共辄复根,通解为X =尹(C sin、心一+ C2 sincd1-d2t将其简化为x = sin(v2+ (p)H 中 A = JcJ+C,sin0 = :、cos0=加幅' Jc;+C; 7C12+C22
20、A e"随时间/的增加而减小因此,这是一种衰减振动.位移随时间/的变化规律见右图7.3. 无阻尼强迫振动在这种悄形下,设物体不受阻力作用,其所受外力为简谐 力/=?sin pt,此时,方程化为m - + kx = /sin pt, d厂密+沁5小d/-根据i"是否等于特征根ie,其通解分为如下两种情形:(1)当p丰3时,其通解为x = ! sin pt + C. sin cot + C7 coscot, q- p此时,特解的振幅为常数,但当P接近于0时,将会导致振幅增大,发生 Q- _ /”类似共振的现象;(2)当p = co时,其通解为x =1 cos pt + Cx s
21、in cot + Co cos cot,2p此时,特解的振幅却随时间的增加而增大,这种现象称为共振,即当外力的频率P等于物体的固有频率时,将发生共振.4. 阻尼强迫振动在这种情形下,假定振动物体既受阻力作用,乂受外力/(A)= /Hsinpr的作用,并设方程变为d2xdF+ 2J + 6?2x = sin pt d/特征根兄=-5土co2-d/HO,则ip不可能为特征根,特解为x* = Asin pt + Bcos pf,> 2(<y2 _/?2)2 +4J2/?2_2妙(Q?_”2)2+4§2p2还可将其化为宀(宀于+4丹川宀心讪一切CM,由此可见,在有阻尼的情况下,将不会发生共振现象,不过,当p = CD时,若3很小,则仍会有较大的振幅:若5比较大,则不会有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校外住宿导师管理制度
- 中级会计职称-经济法-2024年真题
- 商务英语综合教程(第3版 第一册)Unit 1 参考答案
- 驾校教练聘任劳动协议
- 专业技术资格认证及工作经历证明(5篇)
- 水产品养殖合作合同书
- 智能设备销售与租赁合同
- 陶瓷制作考试题及答案
- 财务操作面试题及答案
- 音乐理论西方音乐史知识点总结
- 2024年内蒙古锡林郭勒职业学院招聘真题
- 民航招飞驾驶测试题及答案
- 北京税务筹划课件
- 内燃机技术协议书
- 数字智慧方案数字乡村信息化建设及精细化治理平台建设方案
- 2024年陇南市事业单位专业技术人才引进笔试真题
- 2025届浙江省精诚联盟高三下学期适应性联考生物试题
- 《中央银行数字货币基本知识》课件
- 2025浙江中考:化学必背知识点
- 2025年海南省中考模拟语文试题(含答案)
- 烟草行业智能化生产与监管方案
评论
0/150
提交评论