非线性时间序列_第1页
非线性时间序列_第2页
非线性时间序列_第3页
非线性时间序列_第4页
非线性时间序列_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、近代时间序列分析选讲:一. 非线性时间序列二. GARCH 模型三. 多元时间序列四. 协整模型第一章.非线性时间序列浅释1. 从线性到非线性自回归模型2. 线性时间序列定义的多样性第二章.非线性时间序列模型1. 概述2. 非线性自回归模型3. 带条件异方差的自回归模型4. 两种可逆性5. 时间序列与伪随机数第三章.马尔可夫链与 AR模型1. 马尔可夫链2. AR模型所确定的马尔可夫链3. 若干例子第四章.统计建模方法1. 概论2. 线性性检验3. AR模型参数估计4. AR模型阶数估计第五章.实例和展望1. 实例2. 展望第一章.非线性时间序列浅释1.从线性到非线性自回归模型时间序列Xt是一

2、串随机变量序列, 它有广泛的实际背景,特别是在经济与金融 领域中尤其显著.关于它们的从线性与非线 性概念,可从以下的例子入手作一浅释的说 明.考查一阶线性自回归模型-LAR(1):xt=° xt-i +et, t=1,2,(1.1)其中et为 i.i.d.序列,且 Eet=0, Eet=。2v“ ,而 且 et与xt-1,Xt-1,独立.反复使用(1.1)式的 递推关系,就可得到Xt= xt-1 +et=et + xt-1=et + et-1 + xt-2=et + et-1 + 2 xt-2一2=et + et-1 +et-2+ + a n-1et-n+1 +a nxt-n.(1.

3、2)如果当卜8时,nxt-n 0,(1.3)Gt + a ©t-1 + a 2et-2 + + n-1et-n+1) >、j=0 jet-j .(1.4)虽然保证以上的收敛是有条件的 ,而且要涉 及到具体收敛的含义,但是,对以上的简单 模型,不难相信,当h |<1时,(1.3)(1.4)式成 立.于是,当|。|<1时,模型LAR(1)有平稳 解,且可表达为xt=' j=ojet-j .(1.5)通过上面叙述可见求 LAR(1)模型的解有简 便之优点,此其一.还有第二点,容易推广 到LAR(p)模型.为此考查如下的 p阶线性 自回归模型LAR(p):xt= l

4、Xt-l+ 2Xt-2+.+ pXt-p+et, t=1,2,(1.6)其中et为 i.i.d.序列,且 Eet=0, Eet=。2v* ,而 且et与xt-i, xt-i,独立.虽然反复使用(1.6) 式的递推式,仍然可得到(1.2)式的类似结果, 但是,用扩张后的一阶多元 AR模型求解时, 可显示出与LAR(1)模型求解的神奇的相似. 为此记X1Xt= X;,U=;0:, X”0,ctaa12p |A= 100 ,(1.7) A A,000于是(1.6)式可写成如下的等价形式Xt=A Xt-i+ etU.(1.8)反复使用此式的递推关系,形式上仿照(1.2) 式可得Xt=AX t-1+et

5、U=etU+ et-1AU+A 2xt-2 =etU+et-1AU+et-2A2U+et-n+1An-1U+A nxt-n.(1.10)如果矩阵 A的谱半径(A的特征值的最大 模户(A),满足如下条件(A)<1,由上式可猜想到(1.8)式有如下的解:Xt= k=o AkUet-k.(1.11)其中向量Xt的第一分量xt形成的序列xt, 就是模型(1.6)式的解.由此不难看出,它有以下表达方式xt= k=oket-k.其中系数中k由(1.6)式中的。1产2, . /p确定, 细节从略.不过,(1.11)式给了我们重要启发, 即考虑形如Xt=' k=0 ' ket-k, &#

6、39; k=0k2, (1.12)的时间序列类(其中系数平k能保证(1.12)式 中的Xt有定义).在文献中,这样的序列Xt 就被称为线性时间序列.虽然以上给出了线性时间序列的定义 , 以下暂时不讨论什么是非线性时间序列,代 之先讨论一阶非线性自回归模型 -NLAR(1),以便与 LAR(1)模型进行比较 分析.首先写出NLAR(1)模型如下xt (xt-1)+et, t=1,2,(1.13)其中et为 i.i.d.序列,且 Eet=0, Eb 2<* ,而 且et与xt-i,xt-2,独立,这些假定与 LAR(1)模型相同,但是,e(Xt-i)不再是xt-1的线性函数,代之为非线性函数

7、,比如(xt-i)=xt-i/a+bxt-i2.此时虽然仍可反复使用(i.i3)式进行迭代,但是所得结果是xt=(xt-i) +et=et+(xt-i)=et+( et-i+(xt-2)=et+( et-i+( et-2+(xt-3)=et+( et-i+( et-2+ +(xt-n).(i.i4)根据此式,我们既不能轻易判断p (xt-i)函数 满足怎样的条件时,上式会有极限,也不能 猜测其极限有怎样的形式.对于p阶非线性自回归模型xt=。(xt-i,xt-2, ,xt-p)+et,t=1,2,(1.15)仿照(1.6)至(1.9)式的扩张的方法,我们引入 如下记号(X-,X_2,.,X.,

8、一 X(xt-1,xt-2,xt-p)-,X”(1.16)我们得到与(1.15)式等价的模型Xt=、Xt-1) +etU,t=1,2,(1.17)但是,我们再也得不出(1.9)至(1.14)式的结 果,至此我们已将看出,从线性到非线性 自回归模型有实质性差异,要说清楚它们, 并不是很简单的事情.从数学角度而言,讨 论线性自回归模型可借用泛函分析方法,然 而,讨论非线性自回归模型,则要借用马尔 可夫链的理论和方法.这也正是本讲座要介 绍的主要内容.2.线性时间序列定义的多样性现在简单叙述一下非线性时间序列定 义的复杂性,它与线性时间序列的定义有关 前一小节中(1.12)式所显示的线性时间序列,

9、只是一种定义方式.如果改变对系数甲k的 限制条件,就会给出不同的定义.更为重要 的是,在近代研究中,将(1.12)式中的i.i.d. 序列et放宽为平稳鞅差序列,这在预报理 论中很有意义.无论引用哪一种线性时间序列定义,都 对相应的序列的性质有所研究,因为其研究 成果可用于有关的线性时间序列模型解的 特性研究.事实上,已经有丰富的成果被载 入文献史册.依上所述可知,由于线性时间序列定义 的多样性,必然带来非线性时间序列定义的 复杂性.这里需要强调指的是,对于非线性时间序列,几乎没有文章研究它们的一般性 质,这与线性时间序列情况不同.于是人们 要问,我们用哪些工具来研究非线性时间 序列模型解的特

10、性呢?这正是本次演讲要回答的问题.确切地说,我们将介绍马尔可 夫链,并借助于此来讨论非线性自回归模型 解的问题.第二章.非线性时间序列模型1.概论从(1.12)式可见,一个线性时间序列 xt, 被et的分布和全部系数* i所决定.在此有 无穷多个自由参数,这对统计不方便,因此 人们更关心只依赖有限个自由参数的线性 时间序列,这就是线性时间序列的参数模型.其中最常用 的如ARMA模型.对于非线性 时间序列而言,使用参数模型方法几乎是唯 一的选择.由于非线性函数的多样性,带来 了非线性时间序列模型的多样性.但是,迄今为止被研究得较多,又有应用价值的非线性时序模型,为数极少,而且主要是针对非 线性自

11、回归模型.在介绍此类模型之前,我 们先对非线性时序模型的分类作一概述.通用假定:3为i.i.d.序列,且 Et=0,而 且8t与Xt-1, Xt-2,独立.可加噪声模型:Xt= (Xt-1,Xt-2,)+ t,t=1,2,(2.1)其中M)是自回归函数.当它仅依赖于有 限个未知参数时,记此参数向量为a ,其相 应白(2.1)模型常写成Xt=(Xt-1,Xt-2,;)+ t,t=1,2,(2.2)否则,称(2.1)式称为非参数模型.关于(2.1)(2.2)的模型的平稳性,要在下一章讨论,但是,它有类似于线性 AR模型的几个简单性质,是重要的而且容易获得 的,它们是:E(xt|xt-i,xt-2,

12、)=E (Xt-1,Xt-2,)+,t|Xt-1,Xt-2,=甲(Xt-1,Xt-2,. )+E( ' t|xt-1 ,Xt-2,)=(xt-1,Xt-2,)(2.3)varxt|xt-1, xt-2 ,三 EXt-甲(Xt-1,)2|Xt-1, Xt-2 ,=E£t2|xt-1, Xt-2,=E t22.=2.(2.4)PXt<X|Xt-1,Xt-2,=P甲(Xt-1,)+ 8 t<X|Xt-1,Xt-2,=PR<X-* (Xt-1,)|Xt-1,Xt-2,=Fs(x(xt-1,- ).(2.5)其中巳是的分布函数.带条件异方差的模型:xt= (Xt-1,

13、Xt-2,)+S(Xt-1,Xt-2,)R, t=1,2,(2.6)其中。()和S()也有限参数与非参数型之 分,这都是不言自明的.另外,(2.6)式显然 不属于可加噪声模型.但是,它比下面的更 一般的非可加噪声模型要简单得多.这可通过推广(2.3)(2.4)(2.5)式看出,即有,E(Xt|Xt-1,Xt-2,)=E甲(Xt-1,Xt-2,)+S(Xt-1,Xt-2,pt|Xt-1,Xt-2,=(Xt-1,Xt-2,)+S(Xt-1,Xt-2,)Ep t|Xt-1,Xt-2,=“(Xt-1,Xt-2,) .(2.3)'varXt|Xt-1, Xt-2 ,三 EXt-甲(xt-1,)2

14、|xt-1, Xt-2 ,= ES2(Xt-1,Xt-2,pt2|xt-1, Xt-2, =S2(xt-1,xt-2, . )E t2|xt-1, Xt-2,=S2(Xt-i,Xt-2,尸2.(2.4),PXt<X|Xt-1,Xt-2,)=P。(Xt-1,)+S(Xt-1,尸 t<X|Xt-1, Xt-2,)=Pt<X(Xt-1,- )/S(Xt-1, ) =F,(X"(Xt-1, )/S(Xt-1,).(2.5),-般非线性时序模型 :Xt= (Xt-1,Xt-2,;t, t-1, ) t=1,2,(2.7)其中w ()也有参数与非参数型之区别,这也是不言自明的.

15、显然,(2.7)式既不是可加 噪声模型,也不属于(2.6)式的带条件异方差 的模型.虽然,它可能具有条件异方差性质. 相反,后两者都是(2.7)式的特殊类型.虽说 (2.7)式是更广的模型形式,在文献中却很少 被研究.只有双线性模型作为它的一种特殊 情况,在文献中有些应用和研究结果出现.现写出其模型于后,可供理解其双线性模型 的含义xt=' j=P jXt-j+' j=iq j t-j + j=1 j=iQ ij t-iXt-j.2.非线性自回归模型在前一小节中的(2.1)和(2.2)式就是非线 性自回归模型,而且属于可加噪声模型类 在这一小节里,我们将介绍几种(2.2)式的常

16、 见的模型.函数后的线性自回归模型:f(xt)= lf(xt-1)+ 2f(Xt-2)+.+ pf(xt-p)+ t,(2.8)t=1,2,其中f(.)是一元函数,它有已知和未知的不 同情况,不过总考虑单调增函数的情况,a =(a a 2,.,a p是未知参数.在实际应用中, (xt是可获得量测的序列.当f(.)是已知函数时,(f(xt)也是可获得量测的序列,于是只需考虑 yt=f(xt)所满足 的线性AR模型yt= iyt-i+ 2yt-2+.+ pyt-p+ t,t=1,2,(2.9)此时可不涉及非线性自回归模型概念.在宏 观计量经济分析中,常常对原始数据先取对 数后,再作线性自回归模型统

17、计分析,就属于此种情况.这种先取对数的方法,不仅简 单,而且有经济背景的合理解释,它反应了经济增长幅度的量化规律.虽然在统计学中 还有更多的变换可使用,比如Box-Cox变换, 但是,由于缺少经济背景的合理解释,很少 被使用.由此看来,当f(.)有实际背景依据 时,可以考虑使用(2.7)式的模型.当f(.)是未知函数时,(f(xt)不是可量测的 序列,于是只能考虑(2.8)模型.注意f(.)是单 调函数,可记它的逆变换函数为 f-1(.),于是 由(2.8)模型可得xt= f"( 1f(xt-1)+ 2f(xt-2)+.+ pf(xt-p)+ t), t=1,2,(2.9)'

18、此式属于(2.7)式的特殊情况,此类模型很少 被使用.取而代之是考虑如下的模型Xt= lf(Xt-l)+ 2f(Xt-2)+.+ pf(Xt-p)+ t,t=1,2,(2.10)其中f(.)是一元函数,也有已知和未知之分 可不限于单调增函数.此式属于(2.1)式的特 殊情况,有一定的使用价值.当(2.10)式中的f(.)函数是已知时,此式 还有更进一步的推广模型,Xt=a 1f1(Xt-1,Xt-s)+a 2f2(Xt-1,Xt-s) + . + a pfp(Xt-1,Xt-s)+R, t=1,2,(2.11)其中fk(- )(k=1,2, - ,p)是已知的s元函数.例如,以后将要多次提到的

19、如下的模型:xt= ll(xt-1<0)xt-l+ 2l(xt-1 0)xt-l+ t, t=1,2,(2.12)其中I(.)是示性函数.此模型是分段线性的 是著名的TAR模型的特殊情况.为了有助 于理解它,我们写出它的分段形式:« V +1 x1xt=2Xt.t 乂:t=1,2,请注意(2.8)(2.10)和(2.11)式具有一个共同的特征,就是未知参数都以线性形式出 现在模型中.这一特点在统计建模时带来极大的方便.此类模型便于实际应用.但是,对于xt而言不具有线性特性,所以,讨论 它们的平稳解的问题,讨论它们的建模理论 依据问题,都需要借助于马尔可夫链的工具.已知非线性自回归函数的模型:xt= (xt-1,xt-2,xt-p; )+ t,t=1,2,(2.13)其中()是p元已知函数,但是其

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论