空调压缩机PMSM高速运转的控制策略_第1页
空调压缩机PMSM高速运转的控制策略_第2页
空调压缩机PMSM高速运转的控制策略_第3页
空调压缩机PMSM高速运转的控制策略_第4页
空调压缩机PMSM高速运转的控制策略_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、新能源汽车空调压缩机控制系统研究(文献翻译) 1空调压缩机PMSM高速运转的控制策略摘要:永磁同步电机(PMSM)适用于高速驾驶的电动汽车空调压缩机的应用操作。为了改善PMSM压缩机的性能、效率和可靠性,从而开发了一组控制方法。提出双模式过调制方法,用来提高在高速运转过程中PSW逆变器的电压传输比和PMSM的输出转矩能力。模型参考自适应系统(MRAZ)方法用于估计转子位置,以实现传感器的驱动器。最大转矩/安培(MTPA)控制和弱磁控制的前馈补偿策略,提出了永磁同步电动机-压缩机驱动器的高速稳定运行与低功耗。仿真和实验结果表明这些控制策略的可行性和有效性。1.引言近来,永磁同步电机由于其固有的优

2、点而被用来为电动汽车空调驱动压缩机。永磁同步电机驱动电动汽车空调压缩机的工作特点和传统的永磁同步电机驱动不同。它有两个主要要求:1)由于永磁同步电动机内装压缩机,里面充满腐蚀性液体,不能安装位置传感器。因此,必须采用无传感器控制算法1-3。2)永磁同步电动机必须在高速范围内工作,从而提高功率密度,并避免在低速区的脉动负载转矩引起的振动和噪音4。这个问题由图1和图2来说明。如图1所示,电动机的磁通必须削弱,以使永磁同步电动机加速并超过额定转速,从而导致永磁同步电动机的输出转矩能力在高速运转范围内随着电机转速的增加而减少5。由于永磁同步电动机的输出转矩能力取决于电机的电压,所以PWM逆变器的电压传

3、输比必须得加强,以确保永磁同步电动机有足够的输出转矩。因此,过调制方法需要被使用(上限条件是六步操作)。近年来,几种有效的过调制技术已经研发出来67。如图2所示,空调压缩机的负载转矩随着电机旋转而脉动,而不是一个恒定值,从而导致速度波动和永磁同步电动机-压缩机系统轴振动。此外,对于永磁同步电机的输出力矩增强和功率减少损失,每安培最大转矩(MTPA)控制是一个很有用的技术8。总之,为了满足高性能永磁同步电机-压缩机系统在高速范围内运转的要求,一组控制策略得到应用:1)提出双模式过调制方法,以提高逆变器的电压传输比;2)传感器驱动系统采用基于模型参考自适应系统(MRAS)速度/位置估计计算法;3)

4、MTPA控制与前馈补偿策略提出了用最小电动机电流来减少功率损耗与电动机的最低电流和衰减由压缩机负荷引起的速度波动。这个由图3来说明。进行仿真和实验来证明所提出的控制技术。 2.过调制的无传感器PMSM驱动首先,传感器过调制的永磁同步电动机-压缩机驱动在本文中得到实现,如图4所示。这种驱动系统的基本控制技术是转子磁场定向矢量控制。提出了适用于压缩机驱动的双模式过调制方法代替常规的空间矢量脉宽调制,从而在高速范围内增加电机电压。采用一种模型参考自适应算法来估计转子位置和速度。A 双模式过调制方法双模式过调制方法由图5来说明。其工作原理在1部分(空间矢量六边形一部分)得到阐释作为一个例子。在其他部分

5、的过调制原则和第一部分的情形类似。PWM逆变器的电压传输比定义为=其中Ul-lrms是线到线输出电压的均方根值,Udc是直流电压。 如图5所示,ur,ur1,ur2是PWM逆变器的参考电压矢量,u,u1,u2是相应的实际输出电压矢量。在本文中,调制指数定义为:其中,ric是六边形的内切圆半径。当参考电压矢量的幅值小于六边形的内切圆半径(m1),逆变器工作于线性调制范围内(电压传输比c的上限值是0.707)。随着振幅参考电压矢量的增加,系统进入到过调制范围。当参考电压矢量的幅值大于六边形的内切圆半径而小于六边形的外接圆半径(1m1.15),则逆变器工作在过调制模式I,这时应调整参考电压矢量,使实

6、际输出电压矢量必须在六边形内。在模式I中,实际输出电压矢量和参考电压矢量有着相同的相位角,它的轨道沿着六边形的边,如图5(a)所示。如果参考电压矢量位于六边形内部,那么它将等于实际电压矢量。过调制模式I的电压传输比范围是0.707<0.742。当参考电压矢量的幅值大于六边形的外接圆半径时(m>1.15),逆变器工作在过调制模式II。画一个和三角形ABO对称的三角形ABC,如图5(b)所示。当参考电压矢量的轨迹位于ABC内部时(ur1),实际输出电压矢量为和ur1有着相同相位角的u1;当参考电压矢量的轨迹位于ABC外部时(ur2),实际输出电压矢量为六边形的顶点u2。模式II最终的工

7、作条件是六个步骤的操作和相应的达到其最小值0.78的电压传输比,这意味着在模式II有1.15<m2 , 0.742<0.78。这种双模式过调制方法有两个优点:1)模式I的过调制算法是非常容易实现的,对于压缩机驱动,其电压传输比(上限值为0.742)在大多数工作时间是足够的。2)参考电压矢量调制指数范围大于电压传输比(0.742<0.781.15< m2)和可以减少敏感性与控制脉动压缩机负载在高速运转中造成的错误的传统方法。这已在图6所示。B 基于MRAS的传感器控制算法MRAS对于传感器交流驱动系统中估计转子位置/速度是一种有效的方法。在本文中,在【4】中被提到的基于M

8、RAS的传感器控制算法已被使用。 如图6所示,永磁同步电动机被视为参考模型和被选为可调模型的定子电流方程。能够通过(3)获得估计转子速度和通过积分得知转子位置。 永磁同步电动机-压缩机驱动的无传感器过调制控制算法已经通过对一辆真正的电动车空调进行了实验而得到评估。一台6kW的永磁同步电动机和一台压缩机集成,该压缩机具有参数R=0.366,Ld=1.02mH,Lq=1.70mH,np=3, KE=0.061115V/(rad/s)。一个有基于控制电路的CPU V8501A4的PWM逆变器用于驱动永磁同步电动机。编辑控制程序和通过使用PC与通过通讯适配器下载到CPU来编译。 实验在以下三个条件下进

9、行,三个条件是:(1)参考电机转度2040r/min,高压(HP)2.0MPa,低压(LP)0.2MPa;(2)参考电机转速4080r/min,HP/LP=2.0/0.2MPa;(3)参考电机转速10080r/min,HP/LP=2.0/0.2MPa。每种条件下,无传感器驱动系统分别使用SVPWM和提出过的过调制方法来工作。在条件(2)和(3)下进行的实验结果如图8-11,包括线到线电压、线电流和估计电机转速。电压传输比在SVPWM和过调制下进行比较,如在表I所示。电机电流总谐波失真和电机转速的波动幅度在不同的工作条件下进行了比较,分别如图12和图13所示。这种无传感器过调制驱动系统已在条件(

10、2)下启动性能测试,如图14所示。 从表1可以看出,PWM逆变器的电压传输比得到有效提高。在每个条件下,电压传输比接近上限0.78,这意味着几乎实现了六步操作。为什么没有达到上限0.78的原因是脉动压缩机负荷在六步操作下导致了严重的速度波动。为了保持永磁同步电动机-压缩机驱动系统的稳定运行,调制指数没有强制达到非常高的程度。此外,从图8-13可以看出,电机电压和电流由于过调制而失真。过调制下的速度波动大于SVPWM下的速度波动,这是由于过调制失真电机电流引起的转矩脉动。然而,这些波动随着电机转速的增加而逐渐降低。这些结果意味着,相同的压缩机,负荷较低的PWM逆变器直流线电压需要使用过调制。同时

11、,对于一个恒定的直流线电压,更高的电机电压和更高的输出转矩能力可以通过提出的过调制方法来获得。这些将有利于扩大在PWM逆变器驱动系统的操作范围或降低功率器件的成本。如图14所示。这种无传感器过调制驱动系统的启动速度非常快,无超调。在压缩机负荷下,它只需要0.9s从0r/min到4080r/min。IVMTPA控制的前馈补偿一般来说,永磁同步电动机运行有两个最低限制:电机电压的最低限制和电机电流的最低限制,如(4)和(5)所示。Ismax取决于永磁同步电动机的额定电流,Usmax取决于PWM逆变器的直流线电压和电压传输比。根据永磁同步电动机定子电压方程,方程(5)可改写为:方程(4)和(6)可以

12、在id-iq复平面上得到说明,如图15所示。电机电流限制回路是一个圆形(图15中的红色曲线)和电机电压限制回路是一个椭圆形(图15中的蓝色曲线)。永磁同步电动机的实际操作范围是电流限制圆和电压限制椭圆的交点。当电机速度增加时(高于基频),电压限制回路将变得更小。如果采用过调制技术,电压限制回路可扩大到维持相同的工作区低速。如图15所示。为了在一定的转矩下最小化PMSM的电机电流大小或在一定的电机电流下最大化PMSM的输出转矩,可以采用MTPA控制。(7)中描述了这个问题。(8)所示的MTPA方程是通过解决(7)获得的。根据式(8),MTPA轨迹可以被绘制在id-iq复平面,如图15(绿线)所示

13、。对于高速PMSM驱动,实际的MTPA控制曲线应当调整,如图15中橘黄色线所示。本文中,为了减少永磁同步电动机的功率损耗和衰减脉动压缩机负荷引起的速度波动,从而为永磁同步电动机-压缩机驱动系统提出了MTPA控制和前馈补偿策略,如图16所示。根据压缩机的工作状态,负载转矩值可以通过查看基于转子位置信息的表格来获得。这个估计的负载转矩添加到参考转矩,作为前馈补偿。然后取得所需的电磁转矩。d/q轴电流参考值可以根据所需的电磁转矩,通过使用MTPA方程(8)来获得。无传感器过调制永磁同步电动机-压缩机驱动系统的数值模拟,分别在条件(1)(电机转速2040r/min,HP/LP=2.0/0.2MPa)和

14、条件(2)(电机转速4080r/min,HP/LP=2.0/0.2MPa)下,以及在没有前馈补偿和有前馈补偿的情况下,通过使用MATLAB/SIMULINK来进行。图17和图18显示了在条件(2)下,永磁同步电动机-压缩机驱动系统的实际速度和估计速度。电机电流和速度波动的均方根值比较如表II所示。可以看出,通过上述的前馈MTPA补偿策略,电机电流的幅度减到最小,速度波动有效的减弱。 V结论在本文中,用一套控制策略实现了电动汽车空调高速无传感器永磁同步电动机-压缩机驱动系统。本文提出双模式过调制方法提高PWM逆变器的电压传输比;开发一种MRAS算法估计转子位置和速度;提出一种负载转矩前馈补偿策略

15、来降低压缩机负载引起的电机转速波动和机械振动;采用MTPA控制方法来提高电机效率。仿真和实验结果表明:1)几乎实现了六步操作和通过使用过调制方法增大电机电压,从而增强了永磁同步电动机在高速范围内的输出转矩能力;2)无传感器永磁同步电动机-压缩机系统在过调制引起的脉动负载转矩和失真电机电流的情况下,通过采用MRAS算法来稳定工作;3)通过使用减少永磁同步电动机功率损耗的MTPA控制方法,永磁同步电动机的电机电流幅度减少到最小;4)通过有利于振动抑制和永磁同步电动机-压缩机驱动降噪的前馈补偿,衰减了压缩机负载引起的电机转速波动。致谢作者要感谢中国国家自然科学基金的财政支持。(50607012)参考

16、文献:1 Silverio Bolognani, Luca Tubiana and Mauro Zigliotto, “ Extended Kalman filter tuning in sensorless PMSM drives,” IEEE Trans. On Industry Applications, vol. 39, No. 6, pp.1741-1747, 2003.2 Babak Nahid-Mobarakeh, Farid Meibogy-Tabar and Francois-Michel Sargos, “Back EMF estimation-based sensorle

17、ss control of PMSM: Robustness with respect to measurement errors and inverter irregularities,” IEEE Trans. on Industry Applications, vol. 43, No. 2,pp.485-494, 2007.3 Xi Xiao, Yongdong Li and Meng Zhang, “A sensorless control based on MRAS method in interior permanent magnet machine drive,” in Proc

18、eedings of IEEE PEDS2005, vol.1, pp.734-738, 2005.4 Bon-Ho Bae, Seung-Ki Sul, Jeong-Hyeck Kwon and Ji-Seob Byeon,“Implementation of sensorless vector control for super-high-speed PMSM of turbo-compressor,” IEEE Trans. on Industry Applications,vol. 39, No. 3, pp.811-818, 2003.5 M. Zordan, P. Vas, M. Rashed, S. Bolognani and M. Zigliotto, “Fieldweakening in high-performance PMSM drives: a comparative analysis,” in Proceedings of

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论