




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、注塑缺陷及解决方案一、 包风 包风(air traps)是指熔胶波前将模穴内的空气包覆,它发生在熔胶波前从不同方向的汇流,或是空气无法从排气孔或镶埋件之缝隙逃逸的情况。包风通常发生在最后充填的区域,假如这些区域的排气孔太小或者没有排气孔,就会造成包风,使塑件内部产生空洞或气泡、塑件短射或是表面瑕疪。另外,塑件肉厚差异大时,熔胶倾向于往厚区流动而造成竞流效应(race-tracking effect),这也是造成包风的主要原因,要消除包风可以降低射出速度,以改变充填模式;或者改变排气孔位置、加大排气孔尺寸。由于竞流效应所造的包风可以藉由改变塑件肉厚此例或改
2、变排气孔位置加以改善排气问题。包风的改善方法说明如下: (1) 变更塑件设计:缩减肉厚比例,可以减低熔胶的竞流效应。 (2) 应变更模具设计:将排气孔设置在适当的位置就可以改善排气。排气孔通常设在最后充饱的区域,例如模具与模具交接处、分模面、镶埋件与模壁之间、顶针及模具滑块的位置。重新设计浇口和熔胶传送系统可以改变充填模式,使最后充填区域落在适当的排气孔位置。此外,应确定有足够大的排气孔,足以让充填时的空气逃逸;但是也要小心排气孔不能太大而造成毛边。建议的排气孔尺寸,结晶性塑料为0.025厘米(0.001英吋),不定形塑料为0.038厘米(0.0015英
3、吋)。浇口位置不当,浇口位置不当时,塑流有可能包抄空气或气体,形成积风。更改浇口位置,可以改变充填模式,包风有可能避免。 (3) 调整成形条件:高射出速度会导致喷射流,造成包风。使用较低的射出速度可以让空气有充足的时间逃逸。 二、短射(充填不足) 短射(short shot)是熔胶无法充满整个模穴的现象,特别是薄肉区或流动路径的末端区域。任何会增加熔胶流动阻力,或是妨碍足量塑料流入模穴的因素,都可能造成短射,包括: (1)成品与模具因素: 肉厚过薄或者流动长度过长(L/t比太高)塑件肉厚过薄常是造成短射的主因,因
4、为薄壁区域流动阻力大,塑料流动容易发生迟滞现象,模具冷却效应明确,因此容易发生短射问题。一般可用塑件的L/T的比为其成型性(Moldability)的度量: L/t比0-100:容易成型的厚壁件(Heavy-Walled Part),肉厚>2mm。成型周期20s以上; L/t比100-200:大部分塑件,容易成型; L/t比200-300:不易成型的薄壁件(Thin-Walled Part),肉厚<1mm,成型周期在10s以下; L/t比在300以上:相当不易成型的超薄件,需要特殊设备。 流道太长或者浇口尺寸太小
5、,过度磨损压力 流道系统设计不良使流动长度过长,流道或浇口尺寸太小造成过度射压损耗,都有可能造成短射。可以利用CAE分析找出流道设计参数对短射的影响,从而提出相应对策: 重新设计流道,缩短注道口到模穴流程(Flow Path)距离; 加大主、分流道尺寸以及浇口尺寸,避免射压损耗过距(一般流道损耗压力降应控制在20%以下); 改变流道截面积,尽量采用圆形、梯形等效率(Efficiency)较高的流道形状,避免采用半圆形流道。 浇口数目不足或者位置不当 对于大件或者流动长度较长的塑件往往要采用多点进浇(Multiple
6、;Gating),以避免单一浇口流程过长造成短射; 浇口数目药适当选择,避免单一浇口塑料流程过长造成短射; 将进浇点放在容易排料、不易封口的位置,通常是塑件肉厚较厚处; 应注意流动平衡,令各浇口贡献的流动区域相当。 浇口堵塞 有时会因为流道或者浇口被塑料冷渣堵塞而造成短射。其处理方法为: 射嘴加过滤网或者过滤器,避免未熔融塑料进入模穴; 多次射出后检查浇口通路是否顺畅; 注意浇口尺寸设计是否过小造成提早固化封口; 采用热浇道(Hot Runner) 冷料井设计不良 冷料井(C
7、old Slug Well)未能发生作用,容纳起始塑料波前所带来的冷料,因而是冷料直接进入模穴中妨碍流动。其处理方法为: 增加冷料井、流道延伸部(Runner Extension); 加大冷料井尺寸; 使用内热式注嘴及注道(Internally Heated Nozzle and Sprue) 模具排气不良造成流动阻力 塑料充填排气不良造成在波前位置产生包风空气背压(Back Pressure of Entrapped Air)而使流动
8、阻力增加,不仅造成充填困难、 短射,同时容易产生烧焦裂化的现象。避免排气不良的处理方法: 在模穴转角处及深凹处,需合理安排顶出销(Ejector Pin)、镶块,以利用缝隙充分排气; 增设顶出销以利用间隙排气; 在分模面上加工排气槽; 在较深的凹穴部分将整体模具改成镶块; 排气孔应设于成型塑料最后充填位置,避免包风(Air Trap)而造成短射,排气间隙以不发生毛边溢料为原则,与塑料种类有关; 模穴内抽真空; 降低射速,让空气来得及逃逸; 降低锁模力,提供逃气间隙; 降低模温
9、,避免模具膨胀使逃气间隙变小。 (2)机台及成型条件因素 射出量不足 射出量不足需要检查给料漏斗是否正常、进料遭异物阻塞、止回阀磨耗外,通常是源于对射出机的塑化能力(Plasticzation Capacity)不足,无法达到实际需求射出量(Shot Capacity)。主因是对射出机设备能力估算过高。处理方法为: 更换射出量较大(吨数较高)的机台; 增加螺杆前进时间; 射嘴阻力过大 锁模力不足,造成毛边-短射 锁模力不足时,射出过程中射压会造成动模面稍微后退而产生毛边,使壁厚增加造成缺料而引发
10、短射。处理方法为: 加大锁模力,可以用CAE分析预测所需要锁模力大小; 检查模具公差以及平整度。 射压过低,压力无法克服模内压 射压设定过低,在充填过程中无法克服模穴流动阻力所产生的模穴背压(Cavity Pressure)而造成无法饱模的现象。另一方面,射压过低,也会使塑料无法渗透到模具角落或者深肋处,造成与模具贴合性欠佳,产品尺寸因而无法顺利完成。在充填过程中,可将射压设定较高,以保证塑料依设定行程(流量)填模,避免短射现象。尝试增加射出压力,但是不得超出射出机的规格,以免损害机器的油压系统,一般都限制操作压力为最大射出压力的70-85%。
11、亦不得因为太高的射出压力而造成毛边。 射速过慢,冷却快而黏度高造成流动阻力变大 射速过慢或充填时间过长,造成冷却效果明显,料温下降而使塑料黏度升高,流动性变差;同时剪切率低而使塑料黏度过高,均有可能造成短射问题。通常将射出时间缩短或提高射速是克服端射最有效而经济的方法。 料筒温度/模温过低,使得黏度较高 造成料温过低,黏度太高而难以流动,在进入模穴时容易因冷却而发生固化短射的现象。提高料温对于黏度/温度敏感性的塑料效果相当有效。应注意塑料种类与成型温度范围以确保流动性良好,避免短射发生。提高模温设定、对冷却液节流(Throttle)或改变冷却水循环路径也
12、有部分效果。但过高料温设定应注意裂解以及成型周期增长的负面因素。一般料筒温度设定应该高于塑料的不流动温度5-25,视塑料种类而定。塑料的不流动温度(No-Flow Temperature)定义做塑料在固定荷载(通常为50MPa)及阻力下,不会继续流动的最高温度,也就是滞留温度,是流动温度的截止点。 三、毛边 毛边(flash)指在模具的不连续处(通常是分模面、排气孔、排气顶针、滑动机构等)过量充填造成塑料外溢的瑕疵。造成毛边的原因包括: (1)锁模力太低:射出机锁模力太低,不足以维持成形制程的模板紧闭,会发生毛边; (2)模具有缝隙
13、:假如模具结构变形、分模面不够密合、机器规格不当、成形条件不当、分模面卡料等因素都可能造成分模面接触不完全,造成毛边; (3)成形条件:熔胶温度太高或射出压力太高等造成熔胶流动性过高的不当成形条件都会造成毛边; (4)不当的排气:设计不当和不良的排气系统、或是太深的排气系统都会造成毛边; (5)塑料计量过多:塑料计量过多,过量的熔胶被挤入模穴,模板有可能被模穴内的高压撑开,熔胶溢出,产生毛边。 (6)滞留时间太长或太短:塑料在料管或/和热浇道中滞留时间太长,会使得塑胶变稀,熔胶容易渗入模穴各处的间隙,产生毛边。停留时间太短,熔胶温度太低,熔胶太稠,须高压
14、才能填模,模板有可能撑开,熔胶溢出,产生毛边。 改善塑件发生毛边方法说明如下: (1)调整模具设定:检查模具的对准和模板的翘曲变形。确定模具有适当的排气孔。模具的公、母模不能对齐或密合性不佳都会造成毛边,必须正确密闭地安装设定模具。铣削模面,使得模穴周围能够维持足够的密合压力。假如成形时造成模板变形,应增加支撑柱块或加厚模板,以防止模板变形。清理模面,分模面有未清理干净的塑料会造成模具无法密合,产生毛边。检查适当的排气孔尺寸。 ()调整机器设定:检查射出机的锁模力规格与设定。当机器有足够的锁模力容量,就应调高锁模力。当机器的锁模力不足时,就应提高射出机规格。
15、60; ()调整成形条件:假如熔胶温度太高,可能因为太低的黏滞性而在模板之间溢料,可以观察喷嘴的滴料(droop)情况来判断。减低充填行程的长度,可以降低射出量。加长射出时间或者降低射出速度。应该降低充填速度,特别是降低接近充填完成时的充填速度,可能改善毛边。降低射出压力和降低保压压力,可以减低需求之锁模力。降低料筒温度和喷嘴温度,因为太高的熔胶温度会降低塑料的黏度,造成较稀薄的熔胶层,可能发生毛边。也应注意:避免使用太低的熔胶温度,以至于需要更高的射出压力而产生毛边。 四、凹陷与气孔 凹陷(sink marks)是指塑料的射出量低于模穴容积
16、,造成塑件表面局部下陷,一般发生在塑件的厚肉区,或者是肋、凸毂、内圆角之相接平面上。气孔(voids)是成品内部的真空气泡。发生凹陷和气孔是因为塑件冷却时,在厚肉区局部收缩,而且没有补偿足够的塑料。另外,因为散热不平均等因素,在与肋或外突特征相接平面之另一侧常常发生凹陷。造成凹陷与气孔的制程因素包括:射出压力和保压压力太低、保压时间太短或冷却时间太短、熔胶温度太高或模具温度太高、局部的几何特征。 当外侧的材料冷却与凝固之后,塑料内层开始冷却,塑料收缩导致表层塑料向内拉,因而造成凹陷。假如表层的刚性够强,譬如使用工程塑料,则表层凹陷可能被内层的气泡取代。 改善塑件
17、凹陷的方法说明如下: (1) 变更塑件设计:一般而言,粗厚件易产生凹痕。修改设计的塑件厚度,将厚度变化最小化。添加表面特征以隐藏凹痕,例如在发生凹痕的表面设计一系列的齿状(serrations)。重新设计肋、凸毂、角板厚度为连接基板肉厚的5080%。 (2) 变更模具设计:将浇口重设置在厚肉区或接近厚肉区,以便在薄肉区凝固之前进行保压。增加更多的排气孔或加大排气孔,方便空气逃逸。流道或浇口太小时,可能造成保压不完全。加大浇口和流道尺寸以延后浇口凝固时间,让更多量的塑料于保压阶段挤入模穴。尝试改善模具的冷却系统。当要射出大面积和薄组件时,可能必须使用大浇口
18、或多浇口系统。 (3) 调整成形条件:增加射出成形终点的缓冲量。缓冲量应维持约3 mm(0.12英吋)。浇口无法在压力降低之前凝固,于是造成收缩凹陷,这情形可能以增长射出时间、增加射出压力或加长冷却时间,以增加保压阶段的进胶量来改善。增长螺杆前进时间及降低射出速率。降低熔胶温度和降低模具温度。顶出时熔胶温度太高,可能造成脱模的凹痕。假如模温太低,组件表面先于内部成形,可能造成内部空洞。此时可以提高模面温度或加长成形周期来改善情况。检查止回阀是否造成漏料。 (4) 小心准备塑料:含湿气的塑料可能会造成气孔。塑料的收缩率太大也容易产生气孔。
19、0; 五、缩痕 缩痕(sink mark),在注塑成型领域所描述的是由于产品因为厚薄不均匀而导致产品表面有类似下陷的痕迹。因为塑胶在冷却和减压的时候,冷却过程中的体积缩小率要比压力释放的体积增加率大,所以在降温和压力释放的过程中,零件的体积有收缩的趋势。在零件厚度差异比较大的地方,厚的部分体积收缩时受到的应力比较薄的部分要大, 如果这个应力差在零件表面固化之前就已经足够大的话,就会在使相应的部位表面产生下陷的现象. 注射成型的过程中,是把熔融塑料注入凉的模腔内,又因塑料导热性很差,所以冷却甚是复杂。特别是厚壁部分比薄壁部分冷却较为缓慢,因而厚壁
20、部分易出现缩痕。另外,模具温度稍高部位冷凝缓慢,因而形成模具局部温差,若加上模具本身热传导的差异,那模温偏高、传导较差的部位就会出现缩痕。因而,设计模具时应考虑采用难以出现缩痕的结构。如把筋、突出部分变细,并加圆角;或将筋设计成非实心的;把表面设计成花纹来掩饰此缺陷。因塑料冷却硬化而造成收缩凹陷,主要出现在厚壁位置、筋条、机壳、螺母嵌件的背面等处。 1注塑机方面: (1)注塑机射嘴孔不适当,太大造成融料回流而出现收缩,太小时阻力大料量不足出现收缩; (2)熔料不足也助长缩痕,螺杆式注射机设置有止逆环,以防止熔料沿螺杆回流,如果螺杆或柱塞磨损严重,注射及
21、保压时熔料发生漏流,降低了充模压力和料量,造成熔料不足。在这一点上,可以说柱塞式注射机比螺杆式注射机好; 2模具方面: (1)整个模具应不带毛刺且具有可靠的合模密封性,能承受高压、高速、低黏度熔料的充模。易出毛刺的模具,因闭合不严而加不上足够的成型压力,也易出现缩痕; (2)流道系统设计不当,产生压缩不足:流道料(由主浇道、浇道和浇口组成)在成型制件壁厚(容积过小)的模具中,因注射压力不能充分作用到模腔内的熔料上,使收缩量增大,从而出现较大的缩痕。特别是浇口过小时,即使保压时间充足,因浇口已经凝固,使压力传递不到模腔内的熔料上。尤其是对固熔点不一致的结晶性塑料,就
22、更易产生这种现象。所以,增大主浇道、浇道、浇口,尤其是增大浇口直径是很有效的。在离浇口较远、流动熔料的末端也容易出现缩痕,这是熔料流到末端的流路阻力引起压力损失所造成的,所以在易出现缩痕的附近开设浇口、或者增加该部位的厚度也是有效的。因此,根据情况增加点浇口数目,或变更浇口位置更为有效,最好对称开设浇口。 浇口太小或流道过狭或过浅,流道效率低、阻力大,熔料过早冷却。浇口也不能过大,否则失去了剪切速率,料的黏度高,同样不能使制品饱满。浇口应开设在制品的厚壁部位。流道中开设必要的有足够容量的冷料井可以排除冷料进入型腔使充模持续进行。点浇口、针状浇口的浇口长度一定要控制在1mm以下,否则塑
23、料在浇口凝固快,影响压力传递;必要时可增加点浇口数目或浇口位置以满足实际需要;当流道长而厚时,应在流道边缘设置排气沟槽,减少空气对料流的阻挡作用。多浇口模具要调整各浇口的充模速度。 (3)冷却不均匀:成型制件壁厚极不均匀时,厚壁部分比薄壁部分冷却的缓慢,因而厚壁部分产生缩孔。要消除由于壁厚不均匀产生的缩孔,从理论上来说也是困难的,所以设计制件时应使壁厚均匀。也就是说,重点是缩小壁厚的变化。例如设计凸台时,如果对外径尺寸有要求,就应在中心设置消除缩孔的工艺孔;当要求凸台强度时,不应加粗凸台本身,而应采取利用加强筋增加强度的方式。平缓凹下的缩孔要比急剧凹陷下去的缩孔不那么显眼,所以不要求
24、精度的制件,应在外层已凝固,中心部分尚柔软能够顶出的状态下出模,然后在空气中或温水中缓冷,这样可使缩孔不明显,不影响使用模具的关键部位应有效地设置冷却水道,保证模具的冷却对消除或减少收缩起着很好的效果。 (4)模具壁厚不均,落差较大,表面固化太慢,壁厚的部位出现缩孔或光泽,是因为表面层没有形成坚固的固化层,当中心部收缩时会将表面向内拉成缩孔,甚至由内向外扩散的热量会将表面层再度熔解而出现光泽。相反的,在壁厚的部位如果表面层足够坚固,则中心部的收缩会形成真空泡。可降低模温,降低料温,降低熔料通过壁厚区时的速度,使固化层较厚(但易出现真空泡);调整壁厚,如筋部减薄,厚薄缓变;使用低收缩率
25、的塑料;添加发泡剂于塑料中。 3工艺方面: (1)工艺调整如上所述,当熔料乃至型腔末端的熔料尚未凝固之前,加上足够的保持压力即可防止压缩不足所造成的缩痕。另外增大注射压力,也很重要。而塑料流动性好,如果增加压力,因产生毛刺也会引起缩痕,必要时降低料简温度或改用流动性差的塑料能防止缩痕。 增加注射压力,保压压力,延长注射时间。延长制件在模内冷却停留时间,保持均匀的生产周期,增加背压等均有利于减少收缩现象。对于流动性大的塑料,高压会产生飞边引起塌坑应适当降低料温,降低机筒前段和喷嘴温度,使进入型腔的熔料容积减少,容易冷固;对于高黏度塑料,应提高机筒温度,使充模容易。收
26、缩发生在浇口区域时应延长保压时间。 提高注射速度可以较方便地使制件充满并消除大部分的收缩。 薄壁制件应提高模具温度,保证料流顺畅;厚壁制件应减低模温以加速表皮的固化定型。 (2)注射量调整不当 螺杆式注射成型机注射终了时,必须在螺杆头部与喷嘴之间留有适当数量的熔融塑料(根据机台的大小在5mm左右),用它来缓冲。若这个缓冲量为零,又把注射量调整到终了时,螺杆同时也顶到底,这样在保压时螺杆就无法前进,因而不能进行保压,塑料收缩就成为缩孔而表现出来。解决的办法是留有一定的缓冲量,使注射结束时螺杆仍能前进数毫米乃至十几毫米。缓冲量为零(即
27、注射结束螺杆顶到底时)会缩短注射机本身的寿命,必须注意。 (3)后处理:对于不要求精度的制件,在注射保压完毕,外层基本冷凝硬化而夹心部分尚柔软又能顶出的制件,及早出模,让其在空气或热水中缓慢冷却,可以使收缩凹陷平缓而不那么显眼又不影响使用。(4)缩孔出现在制件工作面上 有些成型制件即使内部出现缩孔,有时也没有妨碍。这种情形如开头叙述的那样,模具温度高的一面易出缩孔,而温度低的面很难出现缩孔。所以,应把不允许出缩孔的面充分冷却,或者相反将允许出缩孔的(即不允许出缩孔的相对面)高温成型也很有效。 4 塑料方面: 收缩量过大 成型塑料本身
28、的热膨胀系数较大时,当然易出现缩孔(例如PE收缩率0.02-0.05、PP收缩率0.01-0.02、PS收缩率0.002-0.006,即使只要有稍微的加强筋,就会产生凹痕)。因此,低温成型这种塑料就不易出现缩孔。若提高注射压力可使更多的塑料注入模腔,所以压力越高缩孔也就相应减小。可是,温度降到塑料所需最低温度以下,即使提高注射压力,也很难防止结晶性塑料的缩孔。例如聚丙烯、高密度聚乙烯、聚甲醛等,其结晶固体与熔融状态的密度显著不同,所以防止缩孔很困难。这时如果允许用非结晶性共聚体代替,就能减少缩孔。另外,如果填充无机填充剂,如玻璃纤维、石棉等也可使缩孔变小。 六、流痕
29、60;流痕(flow marks)是塑件在浇口附近之涟波状的表面瑕疵,现象是以浇口方向为中心,树脂流动的痕迹以同心圆的形状在成型品的表面刻印的现象。其产生原因是塑件温度分布不均匀或塑料太快凝固,熔胶在浇口附近产生乱流、在浇口附近产生冷塑料或是保压阶段没有补偿足够的塑料。造成这些问题的因素包括:低熔胶温度、低模具温度、低射出速度、低射出压力或者流道和浇口太狭小以及注塑机排气不足、滞留时间不当(塑料在料管内停留时间太短,熔胶温度低,即使勉强将型腔填满,保压时还是无法将塑胶压实,留下熔胶在垂直流动方向的缩痕,状如年轮。)或是循环时间(cycle time)不当(当循环时间太短时,
30、塑料在料管内加温不及,熔胶温度低。循环时间须延长到塑胶充分融化,熔胶温度高到足以使得流动方向的缩痕无有产生为宜)。最近根据使用镶埋玻璃模具进行观察分析得知,流痕的缺陷也可能因为熔胶流动波前部份在模穴壁面冷却,并且与后到的熔胶持续翻滚和冷却之效应。 改善塑件流痕的方法说明如下: (1) 变更模具设计:改变流道系统的冷料井尺寸,使得在充填阶段,熔胶波前的较低温塑料不会进到模穴。通常,冷料井的长度等于流道直径。流痕的产生有可能是因为流道系统和浇口尺寸太小而提前封口,使得保压阶段的补偿塑料无法进入模穴。对于特定之模具与塑料,加大流道与浇口尺寸。缩短竖浇道的长度,或者改用热
31、流道设计取代冷流道设计。应改善模具的排气能力。 (2) 调整成形条件:应该提高塑料的流动性,所以可以提高模具温度、提高喷嘴温度、提高料筒温度、提高射出压力、提高射出速度、提高保压压力和加长保压时间。浇口部失去光泽的部分,要使用多段射出,减慢这部分的速度。 (3) 改善塑件设计:塑件不宜有太急剧的肉厚变化。 迟滞效应(hesitation)或迟滞痕迹是一种塑件表面的瑕疪,它导因于熔胶流经薄肉区或肉厚突然变化区域,造成流动停滞。当熔胶射入厚度变化的模穴,会往厚区与阻力较小的区域充填,结果使薄区流动停滞,一直到薄区以外部份都完成充填,停滞
32、的熔胶才继续流动。但是,停滞太久的熔胶可能会在停滞处就先行凝固,当凝固的熔胶被推到塑件表面,就会产生迟滞痕迹。 迟滞效应可能经由变更塑件肉厚或改变浇口位置而改善。要排除塑件的迟滞痕迹,必须考虑重新设计塑件与模具,微调成形条件也是可以思考的方向。说明如下: (1) 变更塑件设计:缩减塑件肉厚变化。 (2) 变更模具设计:浇口位置应该远离薄肉区或肉厚突然变化区域,如此,使迟滞效应延后发生,或在较短时间内结束,将浇口移离薄肉区可以减低迟滞效应。 (3) 调整成形条件:提高熔胶温度及或增加射出压力。 喷射流:当熔胶以高速流
33、过喷嘴、流道、或浇口等狭窄的区域后,进入开放或较宽厚的区域,并且没有和模壁接触,就会产生喷射流(jetting)。蛇状发展的喷射流使熔胶折合而互相接触,造成小规模的缝合线。喷射流会降低塑件强度,造成表面缺陷及内部多重瑕疪。 相较之下,正常的充填模式之熔胶波前则不会产生这些问题。改善塑件之喷射流瑕疵的方法说明如下: (1)更改模具设计:通常喷射流问题出现在浇口设计,重新安置或变更浇口设计,以引导熔胶与侧壁金属模面接触。使用重迭浇口或潜式浇口。以逐渐扩张的熔胶流动面积来减低流动速度;使用凸片或扇形浇口,可以提供熔胶从浇口到模穴较平顺的转移,降低熔胶的剪应力和剪应变。加大浇口与流
34、道尺寸,或缩短浇口长度。检讨冷料井是否设计不当。 (2)调整成形条件:调整为最佳的螺杆速度曲线,使熔胶波前以低速通过浇口,等到熔胶探出浇口外再提高射速,以消除喷射流。亦可能调整料筒温度以逐量提高或降低各段熔胶的温度,以消除喷射流,此改善方法的原因仍未确定,但是可能与模嘴膨胀效应和熔胶性质(例如黏度和表面张力等)之改变有关系。对于大多数的塑料,降低温度使得模口膨胀效应增大;但是,也有塑料(例如PVC)则因为升高温度而增大模嘴膨胀效应。 七、喷射流 当熔胶以高速流过喷嘴、流道、或浇口等狭窄的区域后,进入开放或较宽厚的区域,并且没有和模壁接触,就会产生喷射流
35、(jetting)。蛇状发展的喷射流使熔胶折合而互相接触,造成小规模的缝合线。喷射流会降低塑件强度,造成表面缺陷及内部多重瑕疪。 相较之下,正常的充填模式之熔胶波前则不会产生这些问题。改善塑件之喷射流瑕疵的方法说明如下: (1) 更改模具设计:通常喷射流问题出现在浇口设计,可以重新安置或变更浇口设计,以引导熔胶与侧壁金属模面接触。使用重迭浇口或潜式浇口。以逐渐扩张的熔胶流动面积来减低流动速度;使用凸片或扇形浇口,可以提供熔胶从浇口到模穴较平顺的转移,降低熔胶的剪应力和剪应变。加大浇口与流道尺寸,或缩短浇口长度。检讨冷料井是否设计不当。 (2)
36、调整成形条件:调整为最佳的螺杆速度曲线,使熔胶波前以低速通过浇口,等到熔胶探出浇口外再提高射速,以消除喷射流。亦可能调整料筒温度以逐量提高或降低各段熔胶的温度,以消除喷射流,此改善方法的原因仍未确定,但是可能与模嘴膨胀效应和熔胶性质(例如黏度和表面张力等)之改变有关系。对于大多数的塑料,降低温度使得模口膨胀效应增大;但是,也有塑料(例如PVC)则因为升高温度而增大模嘴膨胀效应。 八、龟裂和白化 1.现象: 龟裂:在成型品的表面有很小的开裂,尤其是有尖锐的角的产品较会发生开裂现象。白化现象是由于脱膜不良或施加不必要压力而使这部分发白。 2.故障分析及排除方
37、法: (1)塑件表面残余应力过大。残余应力过大是导致塑件表面龟裂的主要原因,在工艺操作中,应按照减少塑件残余应力的要求来设定工艺参数,特别是在熔料及模具温度较高,熔体流动性能较好的情况下,应尽量降低注射压力,在排除龟裂故障时可参照排除裂纹及破裂故障的方法。 如果塑件表面已经产生了龟裂,可以考虑采取退火的办法予以消除,退火处理是以低于塑件热变形温度5度左右的温度充分加热塑件1小时左右,然后将其缓慢冷却,最好是将产生龟裂的塑件成型后立即进行退火处理,这有利于完全消除龟裂。然而,在大批量生产中采取退火的方法消除龟裂,实现起来难度较大,一般不宜采用。 此外,由于龟裂的裂痕
38、中留有残余应力,若将产生龟裂缺陷的塑件进行喷涂加工时,涂料中的熔剂很容易使裂痕处溶裂并发展成为裂纹,在这种情况下,应特别注意选用不会发生熔裂的涂料和稀释剂。 (2)塑件表面受到集中外力的作用。外力作用是导致塑件表面产生白化的主要原因。多数情况下,产生白化的部位总是位于塑件的顶出部位。例如,塑件在脱模过程中,由于脱模不良,塑件表面承受的脱模力接近于树脂的弹性极限时,就会出现白化。 出现白化后,应降低注射压力,适当增大脱模斜度,特别是在加强筋和凸台附近应防止倒角。脱模机构的顶出装置要设置在塑件壁厚处或适当增加塑件顶出部位的厚度。 此外,应提高型腔表面的光洁度,减小脱模
39、力,必要时可使用少量脱模剂。 九、光泽度不良 故障分析及排除方法 (1)模具故障:由于塑件的表面是模具型腔面的再现,如果模具表面有伤痕、腐蚀、微孔等表面缺陷,就会复映到塑件表面产生光泽不良。若型腔表面有油污、水分、脱模剂用量太多或选用不当,也会使塑件表面发暗。因此,模具的型腔表面应具有较好的光洁度,最好采取抛光处理或表面镀铬。型腔表面必须保持清洁,及时清除油污和水渍。脱模剂的品种和用量要适当。 模具温度对塑件的表面质量也有很大的影响,通常,不同种类的塑料在不同模温条件下表面光泽差异较大,模温过高或过低都会导致光泽不良。若模温太低,熔料与模具型
40、腔接触后立即固化,会使模具型腔面的再现性下降。为了增加光泽,可适当提高模温,最好是采用在模具冷却回路中通入温水的方法,使热量在型腔中讯速传递,以免延长成型周期,这种方法还可减少成型中残余应力。一般情况下,除聚苯乙烯,ABS,AS外,模温可控制在100度以上。但须注意,若模温太高,也会导致塑件表面发暗。 此外,脱模斜度太小,断面厚度突变,筋条过厚以及浇口和浇道截面太小或突然变化,浇注系统剪切作用太大,熔料呈湍流态流动,模具排气不良等模具故障都会影响塑件的表面质量,导致表面光泽不良。 (2)成型条件控制不当。如果注射速度太快或太慢,注射压力太低,保压时间太短,增压器
41、压力不够,缓冲垫过大,喷嘴孔太小或温度太低,纤维增强塑料的填料分散性能太差,填料外露或铝箔状填料无方向性分布,料筒温度太低,熔料塑化不良以及供料不足,都会导致塑件表面光泽不良。对此,应针对具体情况进行调整。 若在浇口附近或变截面处产生暗区,可通过降低注射速率,改变浇口位置,扩大浇口面积以及在变截面处增加圆弧过渡等到方法予以排除。 若塑件表面有一层薄薄的乳白色,可适当降低注射速度。如果由于填料的分散性能太差导致表面光泽不良,应换用流动性能较好的树脂或换用混炼能力较强的螺杆。 (3)成型原料不符合使用要求。原料不符合使用要求也会导致塑件表面光泽不良。其产生原因及处理方
42、法如下: A成型原料中水分或其他易挥发物含量太高,成型时挥发成分在模具的型腔壁与熔料间凝缩,导致塑件表面光泽不良。应对原料进行预干燥处理。 B原料或着色剂分解变色导致光泽不良。应选用耐温较高的原料和着色剂。 C原料的流动性能太差,使塑件表面不密导致光泽不良。应换用流动性能较好的树脂或增用适量润滑剂以及提高加工温度。D原料中混有异料或不相溶的原料。应换用新料。 E原料粒度不均匀。应筛除粒径差异太大的原料。 F结晶型树脂由于冷却不均导致光泽不良。应合理控制模温和加工温度,对于厚壁塑件,如果冷却不足,也会使塑件表面发毛,光泽偏暗,解决的方法是将塑件从
43、模具中取出后,立即放入浸在冷水中的冷压模中冷却定型。 G原料中再生料回用比例太高,影响熔料的均匀塑化。应减少其用量。 十、变形和翘曲: 翘曲是指注塑制品的形状偏离了模具型腔的形状,它是塑料制品常见的缺陷之一。随着塑料工业的发展,人们对塑料制品的外观和使用性能要求越来越高,翘曲变形程度作为评定产品质量的重要指标之一也越来越多地受到模具设计者的关注与重视。模具设计者希望在设计阶段预测出塑料件可能产生翘曲的原因,以便加以优化设计,从而提高注塑生产的效率和质量,缩短模具设计周期,降低成本。 一模具的结构对注塑制品翘曲变形的影响 在模具设计方
44、面,影响塑件变形的因素主要有浇注系统、冷却系统与顶出系统等。 1浇注系统的设计 注塑模具浇口的位置、形式和浇口的数量将影响塑料在模具型腔内的填充状态,从而导致塑件产生变形。 流动距离越长,由冻结层与中心流动层之间流动和补缩引起的内应力越大;反之,流动距离越短,从浇口到制件流动末端的流动时间越短,充模时冻结层厚度减薄,内应力降低,翘曲变形也会因此大为减少。大型平板形塑件,如果只使用一个中心浇口或一个侧浇口,因直径方向上的收缩率大于圆周方向上的收缩率,成型后的塑
45、件会产生扭曲变形;若改用多个点浇口或薄膜型浇口,则可有效地防止翘曲变形。 当采用点浇进行成型时,同样由于塑料收缩的异向性,浇口的位置、数量都对塑件的变形程度有很大的影响;实验表明,浇口位置具很重要,但并非浇口数目越多越好。 另外,多浇口的使用还能使塑料的流动比(Lt)缩短,从而使模腔内物料密度更趋均匀,收缩更均匀。同时,整个塑件能在较小的注塑压力下充满。而较小的注射压力可减少塑料的分子取向倾向,降低其内应力,因而可减少塑件的变形。 2冷却系统的设计
46、; 在注射过程中,塑件冷却速度的不均匀也将形成塑件收缩的不均匀,这种收缩差别导致弯曲力矩的产生而使塑件发生翘曲。 如果在注射成型平板形塑件时所用的模具型腔、型芯的温度相差过大,由于贴近冷模腔面的熔体很快冷却下来,而贴近热模腔面的料层则会继续收缩,收缩的不均匀将使塑件翘曲。因此,注塑模的冷却应当注意型腔、型芯的温度趋于平衡,两者的温差不能太大。 除了考虑塑件内外表面的温度趋于平衡外,还应考虑塑件各侧的温度一致,即模具冷却时要尽量保持型腔、型芯各处温度均匀一致,
47、使塑件各处的冷却速度均衡,从而使各处的收缩更趋均匀,有效地防止变形的产生。因此,模具上冷却水孔的布置至关重要。在管壁至型腔表面距离确定后,应尽可能使冷却水孔之间的距离小,才能保证型腔壁的温度均匀一致。同时,由于冷却介质的温度随冷却水道长度的增加而上升,使模具的型腔、型芯沿水道产生温差。因此,要求每个冷却回路的水道长度小于2m。在大型模具中应设置数条冷却回路,一条回路的进口位于另一条回路的出口附近。对于长条形塑件,应采用均行冷却回路,减少冷却回路的长度,即减少模具的温差,从而保证塑件均匀冷却。 3顶出系统的设计 顶出系统的设计也
48、直接影响塑件的变形。如果顶出系统布置不平衡,将造成顶出力的不平衡而使塑件变形。因此,在设计顶出系统时应力求与脱模阻力相平衡。另外,顶出杆的截面积不能太小,以防塑件单位面积受力过大(尤其在脱模温度太高时)而使塑件产生变形。顶杆的布置应尽量靠近脱模阻力大的部位。在不影响塑件质量(包括使用要求、尺寸精度与外观等)的前提下,应尽可能多设顶杆以减少塑件的总体变形。 用软质塑料来生产大型深腔薄壁的塑件时,由于脱模阻力较大,而材料又较软,如果完全采用单一的机械式顶出方式,将使塑件产生变形,甚至顶穿或产生折叠而造成塑件报废,如改用多元件联合
49、或气(液)压与机械式顶出相结合的方式效果会更好。 二塑化阶段对制品翘曲变形的影响 塑化阶段即玻璃态的料粒转化为粘流态,提供充模所需的熔体。在这个过程中,聚合物的温度在轴向、径向(相对螺杆而言)的温差会使塑料产生应力;另外,注射机的注射压力、速率等参数会极大地影响充填时分子的取向程度,进而引起翘曲变形。 三充模及冷却阶段对制品翘曲变形的影响 熔融态的塑料在注射压力的作用下,充入模具型腔并在型腔内冷却、凝固的过程是注射成型的关键环节。在这个过程中,温度、压力、速度
50、三者相互耦合作用,对塑件的质量和生产效率均有极大的影响。较高的压力和流速会产生高剪切速率,从而引起平行于流动方向和垂直于流动方向的分子取向的差异,同时产生“冻结效应”。“冻结效应”将产生冻结应力,形成塑件的内应力。温度对翘曲变形的影响体现在以下几个方面。 (1) 塑件上、下表面温差会引起热应力和热变形; (2) 塑件不同区域之间的温度差将引起不同区域间的不均匀收缩; (3) 不同的温度状态会影响塑料件的收缩率。 四脱模阶段对制品翘曲变形的影响 塑件在脱离型腔并冷却至室
51、温的过程中多为玻璃态聚合物。脱模力不平衡、推出机构运动不平稳或脱模顶出面积不当很容易使制品变形。同时,在充模和冷却阶段冻结在塑件内的应力由于失去外界的约束,将会以变形的形式释放出来,从而导致翘曲变形。 五注塑制品的收缩对翘曲变形的影响 注塑制品翘曲变形的直接原因在于塑件的不均匀收缩。如果在模具设计阶段不考虑填充过程中收缩的影响,则制品的几何形状会与设计要求相差很大,严重的变形会致使制品报废。除填充阶段会引起变形外,模具上下壁面的温度差也将引起塑件上下表面收缩的差异,从而产生翘曲变形。 对翘曲分析而言,收缩本身并不重要
52、,重要的是收缩上的差异。在注塑成型过程中,熔融塑料在注射充模阶段由于聚合物分子沿流动方向的排列使塑料在流动方向上的收缩率比垂直方向的收缩率大,而使注塑件产生翘曲变形。一般均匀收缩只引起塑料件体积上的变化,只有不均匀收缩才会引起翘曲变形。结晶型塑料在流动方向与垂直方向上的收缩率之差较非结晶型塑料大,而且其收缩率也较非结晶型塑料大,结晶型塑料大的收缩率与其收缩的异向性叠加后导致结晶型塑料件翘曲变形的倾向较非结晶型塑料大得多。 六残余热应力对制品翘曲变形的影响 在注射成型过程中,残余热应力是引起翘曲变形的一个重要因素,而且对注塑制品
53、的质量有较大的影响。由于残余热应力对制品翘曲变形的影响非常复杂,模具设计者可以借助于注塑CAE软件进行分析和预测。 八、结论 影响注塑制品翘曲变形的因素有很多,模具的结构、塑料材料的热物理性能以及注射成型过程的条件和参数均对制品的翘曲变形有不同程度的影响。因此,对注塑制品翘曲变形机理的研究必须综合考虑整个成型过程和材料性能等多方面的因素。十一、熔接线: (1) 现象:两股树脂合流处,出现熔接痕,此处强度较差。 (2) 可能原因: 塑 料 1. 流动性不佳
54、60; 流长对壁厚比较大的型腔,须以易流塑料充填。如果塑料流动性不够好,熔胶波前愈走愈慢,愈慢愈冷,当熔接线形成时,波前温度已经降得太低,接合不良,线条明显。 2. 添加补强料(如:玻纤)太多。 制 品 1. 壁厚太薄或壁厚差异太大 2. 波前遇合角(Meeting Angle)太小, 模 具 1. 竖浇道(Sprue)、流道(Runner)或浇口(Gate) 位置不当、太小或太长。&
55、#160; 2. 模温太低 提高模温,可以改善熔接线品质。 模温可从材料厂商的建议值开始设定。 每次调整的增量可为5 °C,射胶10次,成型情况稳定后,根据结果,决定是否进一步调整。 3. 排气不良 若是排气不良,波前收口处会卷入空气或挥发物,熔接线线条明显。 有时可在熔接线收口处加一溢料井,成型后再切除之,以改善熔接线的品质。 射出成型机 1. 料管温度太低。 2. 背压不足。 背压可以增加相对运动的熔胶分子间的阻力和摩擦热。 此一摩擦热帮助塑化和促进均匀混炼。 背压不足,会使熔胶无法获得足够的热量。低温熔胶波前形成的熔接线,由於接合不良,线条明显。 3. 射压或射速过低 射压或射速过低,熔胶波前形成熔接线时,温度已经降得太低,接合不良,线条明显。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版数学六年级下册《经典应用题全面提升训练》(试题)
- 福建省泉港区第二中学2024-2025学年第二学期高三期末考试生物试题含解析
- 衡阳师范学院南岳学院《幼儿园课程与教学理论》2023-2024学年第二学期期末试卷
- 儿童画水仙课程
- 河北省邯郸市磁县2025年中考化学试题考前最后一卷预测卷(四)含解析
- 河北省定州市第五中学2024-2025学年初三学生学业调研抽测(第一次)英语试题含答案
- 浙江省杭州市西湖区杭州外国语校2025届初三联合模拟考试化学试题含解析
- 2014食品安全课件
- 郑州幼儿师范高等专科学校《矿图及CAD基础》2023-2024学年第二学期期末试卷
- 哈尔滨铁道职业技术学院《基础生物学实验Ⅱ》2023-2024学年第二学期期末试卷
- 作文纸(网格600字A4)
- 肾上腺疾病诊治指南
- 学习解读2023年新制订的外国国家豁免法课件
- 沙漠之心(2009新疆中考记叙文阅读试题含答案)
- 药物靶标发现与筛选
- 多模态数据融合与检索技术PPT完整全套教学课件
- 合同管理法律法规学习制度
- 《马克思主义与社会科学方法论》授课教案
- 初中综合实践-【课堂实录】手工橡皮章教学设计学情分析教材分析课后反思
- 民用无人机驾驶员管理规定
- 2023年四川二造《建设工程计量与计价实务(土木建筑)》高频核心题库300题(含解析)
评论
0/150
提交评论