苏教版小学数学二年级下册教材分析稿_第1页
苏教版小学数学二年级下册教材分析稿_第2页
苏教版小学数学二年级下册教材分析稿_第3页
苏教版小学数学二年级下册教材分析稿_第4页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、苏教版小学数学二年级下册教材分析稿一、主要的调整和变化(一)教学单元的调整变化1. 增加“时分秒”单元认钟表和时、分、秒的认识原来安排一上和二上,一上主要认识整时和接近整时,二上主要认识几时几分及时、分、秒,教学中发现一年级认识接近整时较难,从几次省调研的测试成绩来看, 这块内容有问题, 所以将认钟表和时、 分、秒的认识安排在二下。2. 合理整合三位数的加法和减法单元将这两个单元整合为一个单元,有利于集中教学。3. 后移”乘法“单元将本单元内容后移至三年级上册,这是内容结构的调整,考虑教材的容量。4. 综合实践活动“你能跳多远”改为“了解你的好朋友”(二)教学内容的调整变化1. 整合千以内数的

2、认识和万以内数的认识。原先“认识千以内的数”安排二下, “认识万以内的数”安排在三上,当初之所以分开来编排, 主要是考虑低年级日常生活中接触的数更多集中在千以内的数,让他们在千以内呆的时间长一些, 更好积累认数的经验, 更好的理解计算的过程,更好发展数感。这样分开也有一些弊端,如三位数加三位数时,和有可能超过 1 千的,大家都发现原教材教学三位数加三位数做了有意回避, 百位相加不向千位进位,学得是不全的。在学完两位数乘一位数后再安排三位数乘一位数,其实进位方法和积的定位等都没有实质性的区别, 浪费了教学时间, 教学效率不够高,同样的情形存在两位数除以一位数及三位数除以一位数, 基于以上的考虑,

3、就整合千以内数的认识和万以内数的认识,安排在二下进行教学。在此基础上,三上安排“两、三位数的加法和减法” 、“两、三位数乘一位数”、“两、三位数除以一位数” ;三下安排“两位数乘两位数” 、“两步混合运算”;四上安排“三位数除以两位数” 、“三步混合运算 ”。这样整合后相关的知识线索就更加清晰了,知识结构更加完整了。2. 把一年级尚未涉及的加、 减法口算集中安排在笔算两、 三位数的加法和减法之前进行教学。一年级所学的加减法口算主要是表内加减, 二下在第六单元 “两三位数加减法”的例 1 和例 2 安排了两位数加减两位数的口算,而表内加减的拓展,根据6+9=,推算 60+90=,600+900,

4、学生应该会,所以安排在练习里。非常明确整数加减法的教学到二下告一段落,今后不会单独有一单元涉及整数加减法的教学。3. 引导学生基于生活经验尝试解答两步计算的实际问题。原来两步计算的实际问题教材线索不是太清晰, 也不敢清晰,因为前一轮课标实验稿明确指出要淡化应用题教学, 步数不是问题,主要的是开放性,挑战性、现实性。现在相对而言, 教材的编排要稳妥务实一些, 两步计算的实际问题的基本线索是:二下:简单的加、减混合三上乘法单元:简单的乘加、乘减三上除法单元:简单的加除、减除三上策略单元:从条件出发分析和思考三下策略单元:从问题出发分析和思考四上策略单元:灵活运用从条件和问题出发前三点都加了“简单”

5、 ,何谓简单呢?就是让学生基于生活经验解答实际问题,题目中基本数量呈现的次序与学生选择条件,确定思路次序是一样的。如:车上原来有 34 人,到某站下车 15 人,又上车 18 人,现在车上有多少人?4. 以认识东、南、西、北为重点,整合认识方向的相关内容。这与课标要求有关, 课标对认识方向要求降低了, 原来是 8 个方向给出其中一个就要能辨认其余 7 个,现在的要求是给出东、南、西、北 4 个方向中的一个会辨认其余的 3 个,了解东南、东北、西北、西南。很明显重点是认识东南西北。5. 重新设计统计内容,着力引导学生了解统计活动过程、积累初步的统计活动经验。重新设计统计内容原因有 2 个:一是课

6、标提出第一学段不再教学正式的统计图,二是课标里边把统计概率的内容核心归结为一个词 “数据分析观念”, 以前叫统计观念, 这两者的区别是更加关注数据的基础地位, 突出基于解决问题需要去收集和整理数据, 突出对数据作出判断和简单预测。 这个过程就是希望教给学生不同于确定性数学的归纳法, 这种归纳是基于数据的归纳, 是个性化创造性归纳。同样一组数据,仁者见仁智者见智,正因为如此,就作了重新设计,第一学段只安排 2 个单元的教学统计,而这 2 个单元的内容核心是帮助学生了解统计的过程,积累统计的经验。二、各单元教材具体解读【第一单元有余数的除法】全单元编排了 3 道例题,具体安排如下:例 1:余数的概

7、念和有余数除法的含义例 2:体会余数应该比除数小例 3:除法的竖式教学重点是有余数除法知识和计算方法, 教学难点是求商。 由于除法概念并没有新的教学内容, 所以教材把利用有余数除法解决实际问题的教学, 与有余数除法的知识教学和计算教学结合起来, 不另外编排例题。 但是,有余数除法的商和余数,在实际问题里表示不同的意思,使用的单位名称有时相同、有时不同,这构成了教学的另一个难点。1. 通过实实在在的平均分活动,帮助学生建立“余数”和“有余数除法”的概念。比较例 1 创设的问题情境,还是分 10 支铅笔,但与原来有所不同,原来是随便分,只要每人分得同样多,现在分得味道比较浓。教材为学生设计的学习线

8、索是: 接受并理解教材所作的示范模仿教材写出有余数的除法算式。教学时需要带领学生了解算式中每一个数、 每一个符号的具体意思, 整体理解算式的含义,体会这道算式比表内除法多了“余数” ,这是由于平均分东西没有全部分完所造成的,从而知道这样的除法是“有余数的除法” 。2. 结合事理,探索并理解“余数要比除数小”的合理性。这一规律原来是安排在例 2 的“试一试”中,现在教材专门编排一道例题,教学余数和除数之间的大小关系, 让学生从具体到抽象、 从感性到理性地理解余数一定比除数小的道理。教学时应引导学生深入思考这样几个问题: 用 12 根或 16 根摆正方形,正好用完,没有剩余;用13、14、15 根

9、摆正方形,都有剩余的小棒,为什么剩下的小棒根数分别是1 根、2根、3 根? 用 12、13、 14、15 根小棒都是摆成 3 个正方形,用 16 根小棒摆成 4 个正方形,为什么多了 1 个正方形? 如果用 17、 18、19、20 根小棒摆正方形,余数可能超过3 吗?随着学生想明白这些问题, 他们就理解了这里的余数只能是1、2、3 的道理。这样,“余数都比除数小”就不再是一个生硬的、机械记忆的知识,而是意义体验的一个数学规律。练习一给出如下表格, 要求学生计算并填表, 学生观察余数的变化, 感受余数不会是 3 或比 3 大的原因,又一次体会“余数一定比除数小” 。配合两道例题编排的“想想做做

10、” ,应要求学生以“把(什么) ,怎样平均分,结果怎样、余多少”的方式,讲述操作活动和图画意思,并把这些内容写成有余数的除法算式。 应引导学生注意商的单位名称以及余数的单位名称, 体会商表示平均分的结果,余数表示剩下的数量,商的单位和余数的单位有时相同,有时不同。要注意的是,这里除法算式的商和余数,都是由操作活动得出,或者从图中看出来,还不能通过计算得到。3. 联系现实背景,理解有余数除法的竖式计算过程,掌握相应的计算方法。原教材直接教学有余数的除法竖式, 修订教材教学则从没有余数的除法竖式开始的,更便于学生理解竖式中的各部分的意义, 这里要着重体会除法竖式的形式、结构以及书写格式,为接着教学

11、有余数除法的笔算作好准备。有余数除法的过程是一个由具体形象到抽象的过渡过程,重点放在“怎样求商”上面。先圈一圈小卡通的想法乘法口诀去想,哪个数与 5 相乘接近 12 但不能超过 12,思考过程是有层次的。4. 有层次地安排用有余数除法解决的实际问题。教材把解决有余数实际问题的教学贯穿于整个单元, 设计成三个层次: 第一层次是根据平均分物体的情境图, 写出有余数除法的算式, 从图画里看出商和余数,主要安排在配合例 1 与例 2 的“想想做做”中;第二层次是列出除法算式,笔算有余数除法,得出实际问题的答案,主要安排在配合例 3 的“想想做做”的第 4、5 题和练习一第 5、6 题。第三层次是练习一

12、的第 9 11 题,重点引导学生灵活选择算法、灵活处理余数。这里虽然涉及到“进 1”或“去尾”的数学方法,但只是联系实际、联系生活经验的具体处理,不是教学“进 1”法和“去尾”法。要允许部分缺少生活经验的学生, 在以后的解题中, 慢慢地体会并掌握处理余数的方法。【第二单元 时、分、秒】全单元编排了 3 道例题,具体安排如下:例 1(试一试):认识钟面上的时针、分针,认、读、写钟面上的整时时间例 2:时、分的概念与进率, 1 时、 1 分实际有多长例 3:认、读、写钟面上不接近整时的时间例 4:认、读、写钟面上接近整时的时间例 5:秒的概念,秒与分的进率, 1 秒实际有多长认、读、写钟面上的时间

13、,培养初步的时间观念是本单元的重要内容。1. 从认识钟面上的整时入手,引入对钟面的认识。 P8的例 1(1)“钟面上的短针是时针,长针是分针” ,教学中应该规范地使用针的名称。(2)8 时的写法教学时应该告诉学生, “:”要写在“ 8”和“ 00”中间偏下的位置上。(3)”试一试“教材有意把 1 时、6 时、 9 时、 11 时依次排列,引导学生顺次读写这些时间,观察钟面的变化,感受时间是按顺序变化的。2. 结合对钟面的认识,探索时和分的关系,感受1 时和 1 分的实际长短。学生建立时、分的概念,应该体验 1 时有多长, 1 分是多长。教学中要切实进行 1 分钟活动,来感受 1 分钟有多长。

14、同时,让学生联系一节课和课间休息时间,感受 1 小时有多长。这些具体感受,使 1 时、 1 分的概念不只是枯燥的语言讲述,而是富有色彩的亲身体验的时间观念。3. 由易到难,逐步掌握几时几分的认读方法,突破相应的学习难点。学习难点就是接近整时的时刻, 为了突破难点, 先集中精力认识不太难的接近整时的时刻,分别认识 7:15、7:30 、7:45 ,放在一起容易形成正确的认识方法。例 3 图呈现孩子早上起床、吃早饭,与妈妈道别、到达学校等四个时间的钟面。教学第 2 幅图时间,要引导学生体会时针在 7 和 8 之间,应该是 7 时刚过, 8 时还没有到,即 7 时多。还要引导学生体会分针指着 3,表

15、示它从 12 起走了15 小格,即 15 分。所以,钟面上的这个时间是 7 时过 15 分,也就是 7 时 15 分。认时的基本技巧:先看时针,大约指向几,是几时多;再看分针走了多少小格就是多少分。可以把上述四个时间连起来,连续说出这小孩几时起床、 几时几分在吃早饭、几时几分离开家,几时几分到达学校。体验7 时几分都是 7 时过了、 8时不到。由于分针走的小格数不同,三个时间就不同。接近整时的时间不是整时,由于时针似乎指着某个数,学生往往会读错写错这样的时间。例4 专门为解决这个难点而编排。钟面上,时针几乎正指着8,分针指着11,这样的时间最难认读。必须使学生清楚地知道,这个时间还没有到 8

16、时。钟面上的涂色扇形表示分针走了 55 小格,是 7 时过 55 分。钟面上的白色扇形,表示离 8 时还有 5 分。所以,这个时间是 7 时 55 分。钟面上,时针几乎正指着 8,分针指着 1,这个时间也接近 8 时。钟面上那个涂色扇形表示分针走了 5 小格,应该是 8 时过 5 分,即 8 时 05 分。4. 通过不同形式的活动,从不同角度体验 1 秒的实际长短。1秒的体验比较难,可以让学生体验几秒、十几秒、几十秒(举例P14)5. 联系生活经验,体会时间是有序的,生活需要有序地安排。 (举例 P16)【第三单元认识方向】全单元编排三道例题,具体安排如下:例 1:联系现实生活空间认识东、南、

17、西、北例 2:认识地图和平面图上的东、南、西、北例 3:认识东南、东北、西南、西北在 3 道例题后安排三次“想想做做” ,没有单元练习,四个主要方向是教学重点,而四个辅助方向的教学要求,要比四个主要方向的教学要求低一些。首先明确两个概念:1. 方向具有确定性和相对性的双重属性。东南西北是确定性的, 用来表示位置关系又是相对的。 主要有两层次意思: 一层意思是,甲物体在乙物体的东面,则乙物体在甲物体的西面;另一层意思是,甲物体在乙物体的南面, 甲物体未必就在其他物体的南面。 这两层意思, 应该让学生在现实的情境里获得体验。2. 东北、西北、东南、西南都是指一个区域,是对一类方向的粗略描述。东北、

18、西北、东南、西南究竟指一条线还是指一大片?很确定是一大片。教材上的方向板用一条线来表示这个方向,但不是说东南方向就是这条线。3. 联系对前、后、左、右的已有认识,辨认东、南、西、北。例 1 的教学,学生凭借语文书上的儿歌完成填空, 体会方向之间的相对关系,不会有困难。 学生知道方向之间的相对关系, 只是初步认识方向。 数学课程标准要求他们在熟悉的环境里,能独立辨认东、南、西、北。在不太熟悉的环境里,只要告诉他们某一个方向,能辨认出另外三个方向。例如,告诉学生哪面是西,他们要能指出东、南、北各是哪面。达到这些要求不是很容易, “试一试”里的活动为此而设计。教学可以分两步进行:第一步先在教室四面分

19、别表示出东、南、西、北四个方向,让学生右手侧平举。面向东站立,感受这时右面是南;面向南站立,感受这时右面是西;面向西站立,感受这时右面是北;面向北站立,感受这时右面是东。这就是说,面对的方向按东、南、西、北的次序变化,其右面则按南、西、北、东的次序随着变化,后者要比前者迟一个节拍。学生一旦了解这个规律,就能用这样的活动辨别方向了。 第二步撤去教室三面表示的南、 西、北,只留下东,让学生用上面的办法依次找到另外三个方向。或者撤去教室四面表示的东、南、西、北,任意告诉学生一个方向,让他们用上面的活动确定其他三个方向。配合例 1 的“想想做做”第 1 题,把例题情境改成女孩放学回家,题目给出这时女孩

20、的前面是西,学生可以利用“试一试”里获得的经验,找到另外三个方向。第 2 题里两名学生面对面站立,各人指出自己的前、后、左、右,以及东、南、西、北。从而发现,面对面两人的前与后、左与右刚好相反,但东、南、西、北却是一致的。由此体会用东、南、西、北表示方向更加客观,也更便于交流。教室、操场是学生熟悉的场地,他们应该知道操场的东、南、西、北面各是指的哪个方向。第 4 题要求学生站在操场中间,看看东、南、西、北面各有些什么。一方面让学生加强对这些场地四面方向的了解,另一方面为例2 的教学作准备。4. 在平面图上辨认东、南、西、北是教学的重点。地图或平面图,通常按“上北、下南,左西、右东”的规则绘制。

21、教学平面图上的方向,不仅要使学生知道并遵守人们的共同约定,还要让他们体会这些规定是合理的。例 2 以例 1 的“想想做做”第 4 题为教学起点,教学例 2,学生可以一边填写平面图,一边体会,平面图上的方向与现实空间的方向是一致的: 上面是北相当于前面是北, 下面是南相当于后面是南, 南北两面相对; 平面图和现实空间都左面是西、右面是东,东西两面相对。这就体验了平面图上的方向规定是合理的。于是就能把记忆和辨认现实空间方向的经验迁移到辨认平面图的方向上。配合例 2 的“想想做做”第 2 题,在一幅学校平面图上,教学楼在食堂的东面,充分表示出物体“在哪里”是相对而言的。不能简单地说“教学楼在东面”

22、,必须说出“教学楼在什么的东面” 。而且,从教学楼在食堂的东面,可以推断食堂在教学楼的西面。 在这幅学校平面图上, 实验楼在食堂的南面, 在花坛的北面。可见,实验楼在哪面应相对于某个参照物而言, 实验楼在食堂的南面, 但却不在操场、花坛的南面。学生能看懂简单的平面图是本单元的教学任务之一。例2 后的“想想做做”第 1、3、4 题为此而编排。学生首先要确认各幅平面图上的东面、南面、西面、北面,并在平面图上确认当前的位置以及将要去的地方, 然后才能回答教材提出的问题。5. 不要求用“东北、西北、东南、西南”描述行走路线。原来有这个要求,现在也描述行走路线,但避开了斜走的路线。P21【测定方向(综合

23、与实践) 】1. 教材提供的是场景图, 不是平面图,判断不同方向景物的依据是图中指南针所显示的结果。 P27注意方向与指南针显示的一致。2. 选择的观测点不同,观测结果也随之变化。学生到操场上观测, 观测点不同观测的结果也不一样,可以分小组, 故意让他们不一样,交流时不仅要说自己能看到的,还要判断别人观测结果是否正确。这样学生对方向的认识更加深刻。重在过程中产生体验感悟。【第四单元认识万以内的数】全单元的新授内容大致分成三段编排,例1例 4 集中教学三位数,帮助学生初步建立 “千”的观念。例 5例 7 集中教学四位数, 让学生初步认识 “万”。例 8 和例 9 则把三位数和四位数结合起来, 教

24、学比较数的大小与求近似数。 这种知识结构与过去教材相比,有很大的不同。把三位数和四位数的认、读、写分开安排,降低了学生认知的坡度, 有分散教学难点的作用。 比较数的大小和求近似数,三位数和四位数的原理与方法是一致的, 都是依据数的组成作出判断, 合起来教学,避免了不必要的重复,能节省时间,提高效率。1. 不同工具表示数有不同的意义(1)用方块表示数,突出的是数所表示的数量多少。认数要直观感觉,这个数所表示的量究竟有多大?方块表示数有助于解决这个问题。在教学 100 以内数时,小棒是最主要的教学和学具。 因为小棒容易数、容易摆、容易捆, 1 根小棒表示一, 10 根小棒捆成 1 捆表示 10 个

25、一是 1 个十,几捆或 10 捆小棒表示几十或一百。这种方式表示数,形象具体,有利于学生形成 100 以内数的概念。然而,教学万以内的数,如果再用小棒做教具和学具,就不太方便了。 为了直观表示万以内的数, 教材选择小方块为教具和学具。 具体地说, 1 个小方块表示一, 10 个小方块连成一条表示 1 个十, 10 条小方块拼成一片表示 1 个百。例 1 是学生第一次接触小方块表示的数,教材指出每一片都表示一百,3 片是 3 个一百,即三百。在教学 100 以内的数时,已经在计数器上建立了百位,并且用百位上的 1 个珠表示一百。现在表示 3 个一百,很自然地应在百位上拨 3个珠。学生看着 3 片

26、小方块和计数器百位上的 3 个珠,能够体会到 3 个一百是三百。这就直观形象地体验了三百的意义。接着呈现由 3 片、2 条和 4 个小方块合起来的图,要求学生思考一共有多少个小方块。他们已经知道 3 片是 3 个百,而 2 条、 4 个表示多少还不清楚。教学时要帮助学生这样想: 1 片小方块平均分成 10 条,也就是 1 百平均分成 10 分,得到 1 条小方块,所以 1 条小方块表示 1 个十; 1 条小方块平均分成 10 份,也就是 1 个十平均分成 10 分,得到个小方块,所以 1 个小方块表示一。学生看懂图画里的 3 个百、 2 个十和 4 个一,就能在计数器上拨出这个数。( 2)用计

27、数器和算盘表示数,突出的是计数的位值原则。位值原则指不同数位上的数字所表示的数值是不同的,借助计数器和算盘数数,突出的是“满十进一” 。在计数器上表示数比用小方块表示数方便,而且比小方块抽象。所以,例 2 直接在计数器上表示数,学生可以一边拨珠,一边说出所表示的数。 其中第(1)小题是“一十一十地数, 从三百五十数到四百六十” ,所涉及的都是几百几十的数。 教材用计数器图给出开始的三百五十和结束的四百六十,让学生注意到计数器的个位上没有拨珠, 所表示的数都是几百几十。 当数出三百九十以后, 接着的数是多少?应该让学生多些思考和交流。 计数器的十位上再拨 1 个珠,这时十位上就有 10 个珠,

28、10 个十是 1 个百,这个数是四百。例 1 和例 2 后的“想想做做”第 1 题,在计数器上拨珠,一个一个地从七百八十六数到八百零五, 其中有几个数是八百零几。 认识几百零几的数, 是这道题的主要内容。在拨珠与数数的过程中,七百八十九添 1 是多少?七百九十九添 1是多少?八百如何添 1、添 1 以后是多少、这个数怎样说?这些都是教学要注意的地方。用计数器表示数过渡到用算盘表示数, 是为了落实课标的要求。 课标的要求是千以内是用计数器。万以内是算盘,原因有 2 点:1 算盘比计数器有更高的抽象性,有利于培养学生的抽象思维。 2 突出中国的传统文化,培养学生的民族意识。从表示数的角度来看,算盘

29、和计数器有相似之处,它们上面都能确定数位,都是用“珠”表示数,都能直观显示数的组成。最大的不同是计数器的每一个珠只表示 1 个单位,而算盘的每一个下珠表示1 个单位,每一个上珠表示5 个单位。例 4 向学生介绍算盘,并在算盘上表示三位数。 介绍算盘的结构。算盘由框、梁、档、珠四个要件构成。其中,梁上面的珠叫上珠,梁下面的珠叫下珠。 介绍算盘上表示数的规则。规则之一是:算盘上记数,算珠要靠梁。即上、下珠靠框则不表示数,上珠往下拨靠梁,下珠往上拨靠梁,才表示数。规则之二是: 1 个下珠表示 1, 1 个上珠表示 5。利用下珠能够表示 1、2、3、4,利用上珠能够表示 5,上珠和下珠同时使用,能够表

30、示 6、7、8、9。学生初步接触算盘,难点就在于它的 1 个上珠表示 5,表示 6、7、8、9 既需要上珠,也需要上珠,需要上、下珠的结合使用。 在计数器上表示三位数和一千。首先要在算盘上确定数位,可以任意选择一档作个位,也可以把算盘最右边一档作为个位。 从个位起,向左依次是十位、百位和千位。 其次要从高位到低位表示数。 三位数一般先拨百位上的珠, 再拨十位上的珠,最后拨个位上的数。然后在算盘上拨珠表示三位数。2. 结合数数认识千和万,突出千和万的双重含义。这是新的知识点, 与以前不一样 (新旧对比),原来是一百一百数认识一千,现在例 2 引导学生直观认识一千,编排了两条认数线索, 让学生体会

31、一千有多大,学会用学具表示一千。一条线索是在计数器上一个一个地数, 九百九十九添上 1 是一千。教材画出的计数器上, 百位、十位、个位上各有 9 个珠,表示九百九十九。 如果再添上 1,个位上是 10 个珠。已有的经验是 10 个一变成 1 个十,十位上就是 10 个珠; 10 个十变成 1 个百,百位上就是 10 个珠。这就需要建立新的数位和计数单位,为此在百位的左边新增加一个“千位” ,这个数位上的 1 个珠表示一千。另一条线索是看着小方块一百一百地数, 1 片小方块表示一百,几片小方块表示几百, 10 片刚好拼成一个大正方体。 这个大正方体表示一千, 由此得出 “10 个一百是一千”。上

32、述的前一条线索, 是逐一计数, 即一个一个地数出物体的个数, 有助于学生体会相邻自然数之间的关系。 后一条线索是按群计数, 突出了计数单位以及相邻单位之间的进率。教材安排这两条认知线索,使“千”的教学更加丰满。例 6 的重点是教学一万, 它既是一个数, 也是一个计数单位。 教材像教学一千那样教学一万, 也编排了两条认知线索。 在教学一万以后, 例题整理万以内的数位顺序表, 这是小学数学教材里第一次出现的数位顺序表。 在此之前, 数位顺序一般表现在计数器或算盘上面,计数器上的“千”既有那一杆是千位的意思,也有那一杆的计数单位是千的意思。 现在出现数位顺序表, 把数位顺序作为一个重要的数学知识教给

33、学生, 让他们知道已经学习了哪些数位, 数位之间是怎样的顺序,并把这些知识牢固地保存在自己的认知结构里。3. 数的组成与读写教学,要特别关注中间、末尾有0 的情形练习三配合例 1 到例 4 的教学,着重练习三位数的组成与读写。其中第4题应该结合数的组成思考得数。 例如,300+20是 3 个百与 2 个十合起来,得320;第 9 题在计数器上拨 5 个珠表示三位数, 这是一道很有趣的题。 能表示的三位数有几百几十几、几百几十、几百零几等,有一百多、二百多、三百多、四百多以及五百等。这些数各不相同, 其原因是各位上的数都不相同。 学生明白这点原因,对十进制计数法就多了一分体验。例 5例 7 在三

34、位数的基础上教学四位数的知识,教材有两点变化:一是把算盘作为认数的主要教、学具;二是压缩进程,把直观认识数、理解数的组成与读数、写数等内容同步教学。例 5 教学教材要求学生照样子在自己的算盘上拨一拨, 引导他们分析数的组成,是认识四位数的关键。照样子拨数,必须从高位到低位依次进行。一边思考一边拨珠,数的组成就很清楚了,把这个数写成 7253,读作七千二百五十三,也不会有困难了。例 7 教学的数,中间有一个 0 或两个 0,这是学生学习的一个难点。教材仍然让学生在算盘上, 照例题的样子拨出四千零六十和七千零三, 在拨数时了解它们的组成。学生先对照着算盘表示的数, 从高位到低位写出每一位上的数,

35、再依据数的组成写出数, 能够体会到写数的要领: 哪一位上有几个单位, 就在这一位上写几,哪一位上一个单位也没有,就在这一位上写 0。教学时要适当帮助学生读中间有 0 的数:数中间的“ 0”应该读出来,无论数的中间有一个0 还是有两个 0,都读一次“零”;数末尾的“ 0”一般不读。例 7 后的“想想做做”第 2 题,对齐着数位顺序表的各个数位写出三个数,要求学生对照着数位顺序表分析数的组成并读数。这比看着算盘上的数抽象一些,但有利于提高学生读写数的能力。其实,对照着数位顺序表读数和写数,也只是一个过渡。学生最终要把数位顺序想在脑子里,并自主进行认、读、写,这才是教学的目标。 第 5 题口算几千加

36、几百和相应的减法, 能够强化对几千几百的认识。要引导学生联系数的组成思考得数。4. 从不同角度理解数的大小比较方法。注意不能用数的大小比较的规则去束缚学生的思维, 学生可以从自己的数学现实和个性特点出发, 设计自己的比较方法。 如比较 2530 和 3180 的大小,有人会想 2530 是 2 千多, 3180 是 3 千多。有人根据两个数的组成,直接比千位上的数。教学应该鼓励学生有自己的方法,尊重他们的思考。最后,各人积累的体验是开放的。例题问学生“怎样比较两个数的大小” ,引导他们反思并积累比较数的大小的经验。教学时,一方面可以帮助学生总结出几个要点,例如,两个数的位数不同如何比较大小?两

37、个数的位数相同如何比较大小?另一方面不要以条文式的方法去限制学生,要允许学生保持自己的想法,使用自己的方法。5. 初步认识近似数,为以后估算准备。教材里没有出现“近似数”这个词语,也不用“四舍五入法”求近似数。只是通过某些三位数接近几百、 某些四位数接近几千, 得出这些数的近似数。 教材希望“接近几百”是学生的体验,不是强调使用某种方法的判断。 “想想做做”第 1 题,在数轴上表示出 500、510、 520600,让学生体会哪几个数接近 500,哪几个数接近 600。虽然不讲 “四舍五入法”,学生仍然能体会到 510、520、530、540 都小于 550,接近 500;560、570、58

38、0、590 都大于 500,接近 600。他们从这里获得的体验,将会有效支持他们求三位数或四位数的近似数。【第五单元分米和毫米】变化不大,稍作讲解。与原来比,还是四个例题,但是多编排了1 个练习五1. 在现实背景中引出毫米的认识,体会认识毫米的实际意义(新旧对比)教学毫米,让学生测量数学书的厚度,发现不到1 厘米,只有直尺上 6 小格那么长。也就是说, 数学书的厚度不能用整厘米表示。 比 1 厘米短的长度怎么表示呢?直尺上的 1 小格是多长? 6 小格是多长?学生在这些疑惑中接受毫米,产生的第一印象是:毫米比厘米小许多,它可以表示较短的长度。这个印象虽然不很精确, 但使学生记住了毫米, 并促使

39、他们进一步去学习毫米的知识。2. 联系数的含义进行不同单位数量的换算。6厘米=()毫米70厘米 =()分米该怎么想呢?传统想法是1厘米是 10 毫米, 6 厘米是 6 个 10,就 6 乘 10,现在教学要联系数的含义,十是 60,70 里面有 7 个 10,思考过程要十分清晰。6 个3. 适当指导测量方法,合理表达测量结果。测量的长度控制在 1 米以内,测量结果的表达有 4 种,( )分米、( )分米( )厘米、( )厘米、( )厘米( )毫米。【第六单元两、三位数的加法和减法】本册十分重要的内容, 份量重、地位重 , 也是整数阶段最后一次教学加、 减法计算。本单元先教学口算, 后教学笔算。

40、 学生已经掌握了两位数加、 减两位数的笔算,接着学习两位数加、减两位数的口算是比较顺的。在教学口算时,不安排笔算的练习,能减少笔算对口算的干扰。学生口算能力强了,对笔算也有好处。长期的小学数学教学经验告诉我们, 学生掌握进位加法和退位减法是比较困难的,尤其是连续进位的加法和隔位退位的减法更加困难。 为此,教材通过内容的编排分散难点。 用两道例题教学加法笔算, 前一道例题侧重于计算法则, 只涉及一般的进位。后一道例题集中解决难点,专门教学连续进位。同样,笔算减法也安排两道例题,前一道例题教学减法的计算法则和验算,只涉及一般的退位,后一个例题着重教学隔位退位的方法。教材没有单独编排估算的例题,而把

41、估算教学融于解决实际问题之中 ( 例5),和笔算结合着教学。这样安排,体现出估算不是一种完全单独的算法,它与口算、笔算有着内在联系,估算是为了方便地解决实际问题。另外,教材结合计算练习,适当安排一些探索规律的题目和“动手做” 。目的是增加计算练习的趣味性和数学思维的强度。 p73“动手做”学生进行这次活动,发现 3 个三位数的和不变,并联系三位数加法计算法则对“和不变”作出解释,能对笔算加法多一点体会。 P82第 7 题题组表现出“和 - 一个加数 =另一个加数”。这个关系既是加法中的各部分关系, 也体现了减法的意义。 第 10 题这两组算式表现出一个规律: 某个三位数减它的回文数得到一个差,

42、 把得到的差加差的回文数一定得到 1089。1.教学稍复杂的口算,鼓励学生通过分解和转化,利用已经掌握的口算完成新的口算,并通过评价各种算法,在比较中自主选择易行、高效、少错的方法。口算两位数加、减两位数,学生中会出现多种算法( p59 的 3 种算法),教学时要关注各种算法的特点, 以及对后续计算学习的影响与作用。 一方面应鼓励学生自主探索, 尊重多样化的算法; 另一方面应分析各种算法的利弊, 引导一些学生改变自己的计算习惯, 采用更有意义的思路与算法。 算法三有明显的笔算印记,它是从个位算起的。 而算法一和算法二是从高位算起的, 这是与算法三的最大不同。人们进行口算,一般从高位算起,思路比

43、较顺,能减少错误的发生。曾经有实验表明, 采用算法一和算法二的计算正确率明显高于算法三。 所以,算法三不提倡,教材也没有出示。算法一和算法二, 不仅可以应用于两位数加两位数的进位加法, 而且还能迁移到两位数减两位数的口算上。 但是,应该注意到, 采用算法一来口算退位减法会有些麻烦,蕴含着发生错误的因素。例如, 56-27 的口算过程是: 50-20=30,16-7=9,20+9=29。而有些学生的第三步会算 30+9=39。显然不如像算法二那样:56-20=36,36-7=29。所以,应该鼓励学生尽量采用算法二。教材在随后的“想想做做”里设计了算法引导的习题。p60 第 1 题, 32+50、

44、82+7、32+57。其中前面两题是连续的, “82”是第 1 题的得数,是第 2 题的加数,两题连起来就是 32+50+7,这正好是第 3 题的算法。又如, p62 第 1 题,也是如此。教学这些题,要充分发挥其作用,让学生感受三道题内部的联系,体会前两题的计算过程就是第 3 题的计算过程,从而适应上述的算法二。2. 引起学生对进位、退位的注意,避免由此造成的错误。进位加和退位减,往往是计算错误的高发区。减少算错、避免算错,需要学生准确把握进位还是不进位、退位还是不退位。为此,教材里有如下的安排。 把不进位加法和进位加法编成题组,不退位减法和退位减法编成题组,以引起学生的注意。教学时要比较相

45、同点和不同点。 先判断得数是几十多,再口算。通常情况是:能口算的题不需要估算,不能口算时才会考虑估算。 为什么这里既估计又口算呢?其实,这两道题是通过说出得数是几十多, 引起学生对不进位与进位, 以及不退位与退位的关注。教学时还应注意的是,得数几十多只要求学生想在脑子里(或者说出来),不必要求写下来,因为这是需要努力培养的习惯。如果学生能够自觉运用估计的结果,口算的正确率自然就会提高。3. 恰当把握用两步计算解决实际问题的教学要求。两步计算的实际问题全套教材第一次出现,例 3 教学要按解决问题的一般步骤,即“理解题意分析数量关系确定解题步骤列式计算检验结果给出答案”的过程组织教学。 要让学生明

46、白每一步算的是什么,体会第二步算式是如何利用第一步计算得数的。 这里要注意的是, 学生群体的解法是多样的,学生个体只要用一种方法解题,不要求学生“一题多解”。4. 突破连续进位、连续退位、隔位退位等计算难点。为了突破这些难点,教材里有以下安排:(1)估算得数大约是几百。初步教学估算, 应该把握住以下几点: 第一,两个加数都是很接近整百的数才适合估算。第二,估计的过程想在脑子里,说在口中,不要求写出来。第三,要联系解决实际问题进行估算,让学生体验估算能方便地解决问题(举例)。(2)采用不同的方式教学连续进位加法和连续退位减法。例 5 在笔算出得数以后, 还要进行三项学习活动。 一是比比笔算的得数与估算的得数,从 703 接近 700,体会两种算法的结果是一致的。二是对竖式计算进行验算,确认笔算的得数正确。三是回顾计算过程,反思其中的进位,体会这道题的计算,个位上的数相加满10,向十位进1;十位上的数相加满10,向百位进 1。感受计算这样的连续进位加法必须十分细心。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论