




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、智能计算研究中心XIV. Bayesian networks(section 1-3)Autumn 2012Instructor: Wang XiaolongHarbin Institute of Technology, Shenzhen Graduate SchoolIntelligent Computation Research Center(HITSGS ICRC)2Outlines Syntax Semantics Parameterized distributions3Bayesian networks A simple, graphical notation for conditi
2、onal independence assertions and hence for compact specification of full joint distributions Syntax: a set of nodes, one per variable a directed, acyclic graph (link directly influences) a conditional distribution for each node given its parents:P (Xi | Parents (Xi) In the simplest case, conditional
3、 distribution represented as a conditional probability table (CPT) giving the distribution over Xi for each combination of parent values4Example Topology of network encodes conditional independence assertions:Weather is independent of the other variablesToothache and Catch are conditionally independ
4、ent given Cavity5Example Im at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesnt call. Sometimes its set off by minor earthquakes. Is there a burglar? Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls Network topology reflects causal knowledge: A burglar can s
5、et the alarm off An earthquake can set the alarm off The alarm can cause Mary to call The alarm can cause John to call6Example contd.7CompactnessA CPT for Boolean Xi with k Boolean parents has 2k rows for the combinations of parent valuesEach row requires one number p for Xi = true(the number for Xi
6、 = false is just 1-p)If each variable has no more than k parents, the complete network requires O(n 2k) numbersI.e., grows linearly with n, vs. O(2n) for the full joint distributionFor burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)8Semantics The semantics of Bayesian networks: A repres
7、entation of the joint probability distribution.(Numerical semantics) An encoding of a collection of conditional independence statements. (Topological semantics)9Numerical semantics The full joint distribution is defined as the product of the local conditional distributions:10Numerical semantics The
8、full joint distribution is defined as the product of the local conditional distributions:11Topological semanticsTopological semantics: 1. Each node is conditionally independent of its non-descendants given its parents12Markov blanket2.Each node is conditionally independent of all others given its Ma
9、rkov blanket: parents + children + childrens parentsTheorem: Topological semantics Numerical semantics13Constructing Bayesian networks1. Choose an ordering of variables X1, ,Xn2. For i = 1 to n add Xi to the network select parents from X1, ,Xi-1 such thatP (Xi | Parents(Xi) = P (Xi | X1, . Xi-1)This
10、 choice of parents guarantees:P (X1, ,Xn) = i =1 P (Xi | X1, , Xi-1)(chain rule)= i =1P (Xi | Parents(Xi)(by construction)nn14Example Suppose we choose the ordering M, J, A, B, EP(J | M) = P(J)?15Example Suppose we choose the ordering M, J, A, B, EP(J | M) = P(J)?NoP(A | J, M) = P(A | J)? P(A | J, M
11、) = P(A)?16Example Suppose we choose the ordering M, J, A, B, EP(J | M) = P(J)?NoP(A | J, M) = P(A | J)? P(A | J, M) = P(A)? NoP(B | A, J, M) = P(B | A)? P(B | A, J, M) = P(B)?17Example Suppose we choose the ordering M, J, A, B, EP(J | M) = P(J)?NoP(A | J, M) = P(A | J)? P(A | J, M) = P(A)? NoP(B |
12、A, J, M) = P(B | A)? YesP(B | A, J, M) = P(B)? NoP(E | B, A ,J, M) = P(E | A)?P(E | B, A, J, M) = P(E | A, B)?18Example Suppose we choose the ordering M, J, A, B, EP(J | M) = P(J)?No P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? NoP(B | A, J, M) = P(B | A)? YesP(B | A, J, M) = P(B)? NoP(E | B, A ,J, M
13、) = P(E | A)? NoP(E | B, A, J, M) = P(E | A, B)? Yes19Example contd. Deciding conditional independence is hard in noncausal directions (Causal models and conditional independence seem hardwired for humans!) Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed20Compact conditional distribut
14、ionsCPT grows exponentially with number of parents (O(2k) )CPT becomes infinite with continuous-valued parent or childSolution: canonical distributions that are defined compactlyDeterministic nodes are the simplest case:21Compact conditional distributions contd.Noisy-OR distributions model multiple
15、noninteracting causes1) Parents U1Uk include all causes (can add leak node)2) Independent failure probability qi for each cause aloneNumber of parameters linear in number of parents (O(k)22Hybrid (discrete+continuous) networksDiscrete (Subsidy? and Buys?); continuous (Harvest and Cost)Option 1: disc
16、retizationpossibly large errors, large CPTsOption 2: finitely parameterized canonical families1) Continuous variable, discrete+continuous parents (e.g., Cost)2) Discrete variable, continuous parents (e.g., Buys?)23Continuous child variablesNeed one conditional density function for child variable giv
17、en continuous parents, for each possible assignment to discrete parentsMost common is the linear Gaussian model, e.g.,:Mean Cost varies linearly with Harvest, variance is fixedLinear variation is unreasonable over the full range, but works OK if the likely range of Harvest is narrow24Continuous chil
18、d variables All-continuous network with LG distributions full joint distribution is a multivariate Gaussian Discrete+continuous LG network is a conditional Gaussian network i.e., a multivariate Gaussian over all continuous variables for each combination of discrete variable values25Discrete variable with continuous parentsProbability of Buys given Cost should be a “soft” threshold:Probit distribution uses integral of Gaussian:26W
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年点胶设备项目申请报告
- 摄影课件教学
- 设计类教学课件
- th发音教学课件
- 整数乘小数的课件
- 旅行教学课件
- 大学生恋爱与性心理
- 无水印教学课件
- 日本教学课件
- 中式翘睫教学课件
- 福建省厦门市双十中学2025届七年级生物第二学期期末联考模拟试题含解析
- 【小学】新苏教版小学数学四年级下册暑假每日一练(02):计算题-应用题(含答案)
- 2025猪蓝耳病防控及净化指南(第三版)
- TCUWA20059-2022城镇供水管网模型构建与应用技术规程
- 2025至2030中国压缩空气储能产业现状调查及项目投资策略建议报告
- 三台县2024-2025学年小学六年级数学毕业检测指导卷含解析
- 宅基地互换合同协议书范本
- 2025人教版数学四年级下册 第一单元《四则运算》单元分层作业
- 园艺植物育种学知到课后答案智慧树章节测试答案2025年春浙江大学
- 集团公司下属子公司管理制度
- 2025年湖南高速铁路职业技术学院单招职业技能考试题库带答案
评论
0/150
提交评论