




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上高中数学必修1函数的基本性质1奇偶性(1)定义:如果对于函数f(x)定义域内的任意x都有f(x)=f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(x)=f(x),则称f(x)为偶函数。如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。注意: 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则x也一定是定义域内的一个自变量(即定义域关于原点对称)。(2)利用定义判断函数
2、奇偶性的格式步骤: 首先确定函数的定义域,并判断其定义域是否关于原点对称; 确定f(x)与f(x)的关系; 作出相应结论:若f(x) = f(x) 或 f(x)f(x) = 0,则f(x)是偶函数;若f(x) =f(x) 或 f(x)f(x) = 0,则f(x)是奇函数。(3)简单性质:图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;设,的定义域分别是,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇2单调性(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意
3、两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)(f(x1)>f(x2)),那么就说f(x)在区间D上是增函数(减函数);注意: 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2)(2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。(3)设复合函数y= fg(x),其中u=g(x) , A是y= fg(x)定义域的某个区间,B是映射g : xu=g(x)
4、 的象集:若u=g(x) 在 A上是增(或减)函数,y= f(u)在B上也是增(或减)函数,则函数y= fg(x)在A上是增函数;若u=g(x)在A上是增(或减)函数,而y= f(u)在B上是减(或增)函数,则函数y= fg(x)在A上是减函数。(4)判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤: 任取x1,x2D,且x1<x2; 作差f(x1)f(x2); 变形(通常是因式分解和配方); 定号(即判断差f(x1)f(x2)的正负); 下结论(即指出函数f(x)在给定的区间D上的单调性)。(5)简单性质奇函数在其对称区间上的单调性相同;偶函数在其对称
5、区间上的单调性相反; 在公共定义域内:增函数增函数是增函数;减函数减函数是减函数;增函数减函数是增函数;减函数增函数是减函数。3最值(1)定义:最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:对于任意的xI,都有f(x)M;存在x0I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:对于任意的xI,都有f(x)M;存在x0I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。注意: 函数最大(小)首先应该是某一个函数值,即存在x0I,使得f(x0) = M; 函数最大(小)应该是所
6、有函数值中最大(小)的,即对于任意的xI,都有f(x)M(f(x)M)。(2)利用函数单调性的判断函数的最大(小)值的方法: 利用二次函数的性质(配方法)求函数的最大(小)值; 利用图象求函数的最大(小)值; 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间a,b上单调递增,在区间b,c上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增则函数y=f(x)在x=b处有最小值f(b);4周期性(1)定义:如果存在一个非零常数T,使得对于函数定义域内的任意x,都有f(x+T)= f(x),则称f(x)为周期函数
7、;(2)性质:f(x+T)= f(x)常常写作若f(x)的周期中,存在一个最小的正数,则称它为f(x)的最小正周期;若周期函数f(x)的周期为T,则f(x)(0)是周期函数,且周期为。四典例解析【奇偶性典型例题】例1以下五个函数:(1);(2);(3);(4); (5),其中奇函数是_ _,偶函数是_ _,非奇非偶函数是 _点评:判断函数的奇偶性是比较基本的问题,难度不大,解决问题时应先考察函数的定义域,若函数的解析式能化简,一般应考虑先化简,但化简必须是等价变换过程(要保证定义域不变)。题型二:奇偶性的应用例2设f(x)是定义在R上的奇函数,若当x0时,f(x)=log3(1+x),则f(2
8、)=_ _。例3已知奇函数,当(0,1)时,那么当(1,0)时,的表达式是 例4若奇函数是定义在(,1)上的增函数,试求a的范围:解:由已知得因f(x)是奇函数,故 ,于是又是定义在(1,1)上的增函数,从而即不等式的解集是【单调性典型例题】例1(1)则a的范围为( ) A B C D (2)函数)是单调函数的充要条件是( ) A B C D(3)已知在区间上是减函数,且,则下列表达正确的是( )A BC D提示:可转化为和在利用函数单调性可得.(4) 如右图是定义在闭区间上的函数的图象,该函数的单调增区间为 例2画出下列函数图象并写出函数的单调区间(1) (2)例3根据函数单调性的定义,证明函数 在 上是减函数例4.设是定义在R上的函数,对、恒有,且当时,。(1)求证:; (2)证明:时恒有;(3)求证:在R上是减函数; (4)若,求的范围。解:(1)取m=0,n= 则,因为 所以 (2)设则 由条件可知又因为,所以 时,恒有(3)设则 = = 因为所以所以即 又因为,所以 所以,即该函数在R上是减函数.(4) 因为,所以所以,所以例5:(复合函数单调性)1.函数 的增区间是( ).A 3,1 B 1,1 C D 2.函数y的单调递增区间为( )A B C D题型五:周期问题例6已知函数是定义在上的周期函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《人工智能应用:机器学习基础与应用教案》
- 专利使用权协议
- 将进酒:古典诗歌情感探究教案
- 自然选择的作用和含义深度解析教学教案
- 保护动物呼唤行动议论文(7篇)
- 生物化学分子生物学在线试题
- 汽车维修行业服务标准与规范
- 航空航天器制造产业报告表
- 一场激烈的辩论赛事件描写(15篇)
- 中医药服务与乡村社区健康治理融合模式
- 人教版九年级物理 14.3能量的转化和守恒(学习、上课课件)
- 2024年网络安全知识竞赛考试题库500题(含答案)
- 江苏省徐州市贾汪区2023-2024学年七年级上学期期中考试数学试卷(含解析)
- 《港口粉尘在线监测系统建设技术规范(征求意见稿)》编制说明
- 品质巡检个人工作计划
- 医院采购委员会管理制度
- 设备管道 防腐保温施工方案
- DZ∕T 0214-2020 矿产地质勘查规范 铜、铅、锌、银、镍、钼(正式版)
- 校车安全行车记录表
- QCSG1204009-2015电力监控系统安全防护技术规范
- 出租车安全教育
评论
0/150
提交评论