




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、综合与实践获取最大利润教学目标【知识与能力】能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(或小)值,培养学生解决问题的能力。【过程与方法】应用已有的知识,经过自主探索和合作交流尝试解决问题。【情感态度价值观】在经历和体验数学知识发现的过程中,提高思维品质,在勇于创新的过程中树立学好数学的自信心。教学重难点【教学重点】二次函数在最优化问题中的应用。【教学难点】 从现实问题中建立二次函数模型,学生较难理解和掌握。课前准备课件等。教学过程一、问题引入在日常生活、生产和科研中,常常会遇到求什么条件下可使面积最大、利润最大、材料最省、时间最少、效率最高等问题,这
2、类问题称为最优化问题.其中一些问题可以归结为求二次函数的最大值或最小值.如何利用二次函数分析解决这样的问题呢?本节课我们来研究二次函数在实际问题中的应用.做一做:从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是:h=30t-5t2(0t6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?我们可以借助函数图象解决这个问题,画出函数h=30t-5t2(0t6)的图象,如以下图,可以看出这个函数的图象是一条抛物线的一局部.这条抛物线的顶点是这个函数图象的最高点,也就是说,当t取顶点的横坐标时,这个函数有最大值.因此,当t=3时,h有最大
3、值=45,也就是说,小球运动的时间是3s时,小球最高,小球运动中的最大高度是45 m.一般地,当a>0(或a<0)时,抛物线y=ax2+bx+c的顶点是最低(或高)点,也就是说,当x=-2a/b时,二次函数y=ax2+bx+c有最小(或大)值.二、新课教授问题1.用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地面积S最大?师生活动:学生积极思考,找到等量关系式,并尝试解答.教师巡视、指导,最后给出解答过程.解:矩形场地的周长是60 m,一边长l,那么另一边长为(30-l),场地的面积S=l(30-l),即S=-l2+30l(0<l&
4、lt;30).因此,当l=15(m)时,S有最大值=225(m2).即当l是15 m时,场地面积S最大,最大值是225 m2.问题2.某商品现在的售价是每件60元,每星期可卖出300件,市场调查反映,如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.商品的进价为每件40元,如何定价才能使利润最大?师生活动:教师分析存在的问题,书写解答过程.分析:调整价格包括涨价和降价两种情况.我们先来看涨价的情况.设每件涨价x元,那么每星期售出商品的利润y随之改变.我们先来确定y随x变化的函数关系式,涨价x元时,每星期少卖10x件,实际卖出(300-10x)元.销售额为(60+x
5、)(300-10x)元,买进商品需付40(300-10x)元.因此,所得利润为y=(60+x)(300-10x)-40(300-10x),(0x30)即y=-10x2+100x+600=-10(x2-10x)+600=-10(x2-10x+25)+850=-10(x-5)2+850(0x30)所在,在涨价的情况下,涨价5元,即定价65元时,利润最大,最大为850元.思考:在降价的情况下,最大利润是多少?(降价元,即定价元时,利润最大,最大为6 125元.)思考:由上面的讨论及现在的销售情况,你知道如何定价才能使利润最大了吗?(在涨价的情况下,定价65元;在降价的情况下,定价元.)问题3:图中是
6、抛物线形拱桥,当水面在l时,拱顶离水面2 m,水面宽4 m.假设水面下降1 m,水面宽度增加多少?师生活动:学生完成解答.教师分析存在的问题,书写解答过程.分析:我们知道二次函数的图象是抛物线,建立适当的坐标系,就可以求出这条抛物线表示的二次函数.为解题简便,以抛物线的对称轴为y轴建立直角坐标系.可设这条抛物线表示的二次函数为y=ax2.由抛物线经过点(2,-2),可得-2=a×22,解得a=-1/2,这条抛物线表示的二次函数为y=-x2/2.水面下降1 m,水面所在位置的纵坐标为y=-3,代入上述表达式得x=±.故水面下降1 m,水面宽度增加(-4)m.让学生回忆解题过程
7、,讨论、交流、归纳解题步骤:(1)先分析问题中的数量关系,列出函数关系式;(2)研究自变量的取值范围;(3)研究所得的函数;(4)检验x的取值是否是自变量的取值范围内,并求相关的值;(5)解决提出的实际问题.学生尝试从前面四道题中找到解题规律.教师补充学生答复中的缺乏,及时纠正.三、稳固练习1.二次函数y=(3+x)(1-2x),当x=时,函数有最值,为. 【答案】-5/4大2.二次函数y=x2-8x+c的最小值为0,那么c的值等于()【答案】D3.沿墙用长32 m的竹篱笆围成一个矩形的护栏(三面),怎样围才能使矩形护栏面积最大?最大面积为多少?试画出所得函数的图象.【答案】围成的矩
8、形一边长为8 m、另一边长为16 m可使矩形护栏的面积最大,最大面积为128 m2.图象略.(注意自变量的取值范围)4.某旅社有客房120间,每间客房的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金增加5元,那么客房每天出租会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?【答案】将每间客房的日租金提高到75元时,总收入最高,比装修前的日租金总收入增加750元.5.某产品每件的本钱价是120元,试销阶段,每件产品的销售价x (元)与产品的日销售量y(台)之间的函数关系如下表所示:x(元
9、)130150165y(台)705035并且日销售量y是每件售价x的一次函数.(1)求y与x之间的函数关系式;(2)为获得最大利润,每件产品的销售价应定为多少元?此时每日销售的利润是多少?【答案】(1)y=-x+200(2)销售利润S=(-x+200)(x-120),当售价定为每件160元时,每日销售利润最大为1 600元.四、课堂小结1.得出用二次函数知识解决实际生活中的最值问题的一般步骤:(1)列出二次函数的表达式,并根据自变量的实际意义确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值.2.解题循环图:教学反思本节课充分运用导学提纲,教师提
10、前通过一系列问题的设置引导学生课前预习.在课堂上通过对一系列问题的解决与交流,让学生通过二次函数掌握解决面积最大、利润最大等这一类题的方法,学会用建模的思想去解决和函数有关的应用问题.所以在例题的处理中适当地降低了难度,让学生的思维有一个拓展的空间.在训练的过程中,通过学生的独立思考与小组合作探究相结合,使学生的分析能力、表达能力及思维能力都得到训练和提高.同时也注重对解题方法与解题模式的归纳与总结,并适当地渗透转化、化归、数形结合等数学思想方法.就整节课看,学生的积极性得以充分调动,特别是学困生,在独立思考和小组合作中改变以往的配角地位,也能积极参与到课堂学习活动中.今后继续发扬从学生出发,
11、从学生的需要出发,把问题的难度降低,让学生在能力范围内掌握新知识,等有了足够的热身运动之后再去拓展延伸.第2课时比例线段1知道线段的比的概念,会计算两条线段的比;(重点)2理解成比例线段的概念;(重点)3掌握成比例线段的判定方法(难点)一、情境导入请观察以下几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?这些例子都是形状相同、大小不同的图形它们之所以大小不同,是因为它们图上对应的线段的长度不同二、合作探究探究点一:线段的比【类型一】根据线段的比求长度如下列图,M为线段AB上一点,AMMB35,且AB16cm,求线段AM、BM的长度解:线段AM与MB的比反映了这两条线段在全线段AB中
12、所占的份数,由AMMB35可知AMAB,MBAB.AB16cm,AM×166(cm),MB×1610(cm)方法总结:此题也可设AM3k,MB5k,利用3k5k16求解更简便,这也是解这类题常用的方法【类型二】比例尺在比例尺为150 000的地图上,量得甲、乙两地的距离是3cm,那么甲、乙两地的实际距离是_m.解析:根据“比例尺可求解设甲、乙两地的实际距离为xcm,那么有150 0003x,解得x150 000cm1500m.方法总结:理解比例尺的意义,注意实际尺寸的单位要进行恰当的转化探究点二:成比例线段【类型一】判断线段成比例以下四组线段中,是成比例线段的是()A3cm
13、,4cm,5cm,6cmB4cm,8cm,3cm,5cmC5cm,15cm,2cm,6cmD8cm,4cm,1cm,3cm解析:将每组数据按从小到大的顺序排列,前两条线段的比和后两条线段的比相等的四条线段成比例四个选项中,只有C项排列后有.应选C.方法总结:判断四条线段是否成比例的方法:(1)把四条线段按从小到大顺序排好,计算前两条线段的比和后两条线段的比,看是否相等作出判断;(2)把四条线段按从小到大顺序排好,计算前后两个数的积与中间两个数的积,看是否相等作出判断【类型二】由线段成比例求线段的长三条线段的长分别为1cm,cm,2cm,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式解:因为此题中没有明确告知是求1,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论设要求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论