整式的乘除(共7页)_第1页
整式的乘除(共7页)_第2页
整式的乘除(共7页)_第3页
整式的乘除(共7页)_第4页
整式的乘除(共7页)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、整式的乘除一:【课前预习】(一):【知识梳理】1.整式的运算之 整式的乘除法:幂的运算:整式的乘法法则:单项式乘以单项式: 。单项式乘以多项式: 。单项式乘以多项式: 。乘法公式:平方差: 。完全平方公式: 。整式的除法:单项式相除:把它们的系数、相同字母分别相除,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式,相同字母相除要用到同底数幂的运算性质。多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加(二):【课前练习1. 下列计算中,正确的是( ) A2a+3b=5ab;Ba·a3=a3 ;Ca6÷a2=a3 ;D(ab)2=

2、a2b22. 下列两个多项式相乘,可用平方差公式( ) (2a3b)(3b2a);(2a 3b)(2a+3b) (2a +3b)(2a 3b);(2a+3b)(2a3b)A;B ;C ;D3 (1)(-5xy2)3  (2)(-2a2b3)4 (3)(-3×102)3 (4)若xn=3,yn=2,则(xy)n= ;  (5)若10x=2,10y=3,则10 2x+3y= .(6)(x+y+z)(x+y-z)1下列运算错误的是 ( )Ax2+2x2=3x2 B2x3(-x2)=-2x5 C(x2)3=x5 D6x2÷2x2=3x22按下面图示的程序计算,若

3、开始输入的值为x=3,则最后输出的结果是 ( )A6 B21 C231 D1563若x2+kx+9是完全平方式,则k等于 ( )A3 B-6 C6 D6或-64下列分解因式正确的是 ( )A B3x3+2x2+x=x(3x2+2x)Cx2-2xy-y2=(x-y)2 D9m2-1=(9m+1)(9m-1)5如图,在矩形ABCD中,两个阴影部分都是矩形,依照右图中标出的数据,计算图中空白部分的面积,其面积是( )Abc-ab+ac+c2 Ba2+ab+bc-acCab-bc-ac+c2 Db2-bc+a2-ab6用火柴棒按如下图所示的方式搭三角形,搭1个三角形需要3根火柴棒,搭2个三角形需5根火

4、柴棒,搭3个三角形需7根火柴棒按此规律搭下去,搭n个三角形需要火柴棒根数是 ( ) A3n B2n+1 Cn2+2n-1 Dn2+n+1二:【经典考题剖析】1. 若求(x2m)3+(yn)3x2m·yn的值2. 如图所示是杨辉三角系数表,它的作用是指导读者按规律写出形如(a+b)2(其中n为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a+b)4展开式中的系数: (a+b)1=a +b;(a+b)2=a2+2ab+b2 (a+b)3=a3 +3a2 b+3ab2+b3 则(a+b)4=_a4+_a3 b+_ a2 b2+_(a+b)6= 3. 阅读材料并解答问题:我们已经知道

5、,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:(2ab)(a+b)=2a23ab+ b2就可以用图lll或图ll2等图形的面积表示 (1)请写出图l13所表示的代数恒等式: (2)试画出一个几何图形,使它的面积能表示: (a+b)(a+3b)a24ab十3b2 (3)请仿照上述方法另写一下个含有a、b的代数恒等式,并画出与之对应的几何图形三:【课后训练】 1. 下列计算错误的个数是( ) Al个 B2个 C3个 D4个 4. 下列各题计算正确的是( ) A、x8÷x4÷x3=1 B、a8÷a-8=1 C. 310

6、0÷399=3 D.510÷55÷5-2=547. 求值:(1)(1)(1)(1)(1)8. 化学课上老师用硫酸溶液做试验,第一次实验用去了a2毫升硫酸,第二次实验用去了b2毫升硫酸,第三次用去了2ab毫升硫酸,若a=36,b=l4则化学老师做三次实验共用去了多少毫升硫酸?9. 观察下列各式: 由此可以猜想:()n =_(n为正整数,且a0) 证明你的结论:10. 阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+4+5+100=?经过研究,这个问题的一般性结论是1+2+3+4+5+n=n(n+1),其中n是正整数现在我们来研究一个类似的问题:

7、 观察下面三个特殊的等式: 1×2+2×3+3×4+n(n+1)=? 1×2= (1×2×30×1×2)2×3= (2×3×41×2×3) 3×4= (3×4×52×3×4)将这三个等式的两边分别相加,可以得到1×+2×3 3×4=×3×4×5=20 读完这段材料,请你思考后回答: 1×2+2×3+3×4+100×10

8、1=_. 1×2+2×3+3×4+n(n+1)=_. 1×2×3+2×3×4+n(n+1)(n+2)=_-.(只需写出结果,不必写中间的过程)因式分解一:【课前预习】(一):【知识梳理】 1分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式2分解困式的方法: 提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法 运用公式法:平方差公式: ; 完全平方公式: ;3分解因式的步骤:(1)分解因式时,首先考虑是否有公因式,如

9、果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。4分解因式时常见的思维误区:提公因式时,其公因式应找字母指数最低的,而不是以首项为准若有一项被全部提出,括号内的项“ 1”易漏掉分解不彻底,如保留中括号形式,还能继续分解等(二):【课前练习】1.下列各组多项式中没有公因式的是( ) A3x2与 6x24x B.3(ab)2与11(ba)3 Cmxmy与 nynx Dabac与 abbc2. 下列各题中,分解因式错误的是( ) 3. 列多项式能用平方差公式分解因

10、式的是() 4. 分解因式:x2+2xy+y24 =_5. 分解因式:(1);(2) ;(3) ;(4);(5)以上三题用了 公式 7 (1)已知x=-2时,代数式ax3+bx+1的值为6,那么x=2时,求代数式ax3+bx+1的值(2)矩形一边长是5a+2b,另一边长比它小a-b,求矩形面积二:【经典考题剖析】 1. 分解因式:(1);(2);(3);(4)分析:因式分解时,无论有几项,首先考虑提取公因式。提公因式时,不仅注意数,也要注意字母,字母可能是单项式也可能是多项式,一次提尽。当某项完全提出后,该项应为“1”注意, 分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在

11、前,多项式在后;(3)相同因式写成幂的形式;(4)分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。2. 分解因式:(1);(2);(3)分析:对于二次三项齐次式,将其中一个字母看作“末知数”,另一个字母视为“常数”。首先考虑提公因式后,由余下因式的项数为3项,可考虑完全平方式或十字相乘法继续分解;如果项数为2,可考虑平方差、立方差、立方和公式。(3)题无公因式,项数为2项,可考虑平方差公式先分解开,再由项数考虑选择方法继续分解。3. 计算:(1)(2)分析:(1)此题先分解因式后约分,则余下首尾两数。(2)分解后,便有规可循,再求1到2002的和。4. 分解因式:(

12、1);(2)分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法,5. (1)在实数范围内分解因式:;(2)已知、是ABC的三边,且满足,求证:ABC为等边三角形。分析:此题给出的是三边之间的关系,而要证等边三角形,则须考虑证,从已知给出的等式结构看出,应构造出三个完全平方式,即可得证,将原式两边同乘以2即可。略证: 即ABC为等边三角形。三:【课后训练】 1. 若是一个完全平方式,那么的值是( )A24 B12 C±12 D±242. 把多项式因式分解的结果是( )A B C D3. 如果二次三项式可分解为,则的值为( )A1 B1 C2 D24. 已知可以被在6070之间的两个整数整除,则这两个数是( )A61、63 B61、65 C61、67 D63、655. 计算:1998×2002 , 。6. 若,那么 。7. 、满足,分解因式 。8. 因式分解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论