精品解析:湖北省恩施州备考2022年中考数学试题(原卷版)_第1页
精品解析:湖北省恩施州备考2022年中考数学试题(原卷版)_第2页
精品解析:湖北省恩施州备考2022年中考数学试题(原卷版)_第3页
精品解析:湖北省恩施州备考2022年中考数学试题(原卷版)_第4页
精品解析:湖北省恩施州备考2022年中考数学试题(原卷版)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、湖北省恩施州备考2022年中考数学试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请将选项前的字母代号填涂在答题卷相应位置上1.5的绝对值是( )a. 5b. 5c. d. 2.茶中精品“恩施绿”“利川红”享誉世界去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )a. b. c. d. 3.下列交通标识,既是中心对称图形,又是轴对称图形的是( )a. b. c. d. 4.下列计算正确的是( )a. b. c. d. 5.函数的自变量的取值范围是( )a. b. 且c. d. 且6.“彩缕碧筠粽,香梗白玉团”端午佳节,小明妈妈准备了豆沙粽2个、红

2、枣烷4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽小明任意选取一个,选到甜粽的概率是( )a b. c. d. 7.在实数范围内定义运算“”:,例如:如果,则的值是( )a. b. 1c. 0d. 28.我国古代数学著作九章算术“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”意思是:有大小两种盛酒桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒斛,1个小桶盛酒斛,下列方程组正确的是( )a. b. c. d. 9.如图是由四个相同的小正方体组成的立体图形,它的主视图为(

3、 )a. b. c. d. 10.甲乙两车从城出发前往城,在整个行程中,汽车离开城的距离与时刻的对应关系如图所示,则下列结论错误的是( )a. 甲车的平均速度为b. 乙车的平均速度为c. 乙车比甲车先到城d. 乙车比甲车先出发11.如图,正方形的边长为4,点在上且,为对角线上一动点,则周长的最小值为( )a. 5b. 6c. 7d. 812.如图,已知二次函数的图象与轴相交于、两点则以下结论:;二次函数的图象的对称轴为;其中正确的有( )个a. 0b. 1c. 2d. 3二、填空题:不要求写出解答过程,请把答案直接写在答题卷相应位置上13.9的算术平方根是 14.如图,直线,点直线上,点在直线

4、上,则_15.如图,已知半圆的直径,点在半圆上,以点为圆心,为半径画弧交于点,连接若,则图中阴影部分的面积为_(结果不取近似值)16.如图,在平面直角坐标系中,的顶点坐标分别为:,已知,作点关于点的对称点,点关于点的对称点,点关于点的对称点,点关于点的对称点,点关于点的对称点,依此类推,则点的坐标为_三、解答题:请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤17.先化简,再求值:,其中18.如图,平分abc交于点,点c在上且,连接求证:四边形是菱形19.某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查调查结果分为四类:a类非常了

5、解;b类比较了解;c一般了解;d类不了解现将调查结果绘制成如下不完整的统计图,请根据统计图中的信息解答下列问题: (1)本次共调查了_名学生;(2)补全条形统计图;(3)d类所对应扇形的圆心角的大小为_;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有_名20.如图,一艘轮船以每小时30海里的速度自东向西航行,在处测得小岛位于其西北方向(北偏西方向),2小时后轮船到达处,在处测得小岛位于其北偏东方向求此时船与小岛的距离(结果保留整数,参考数据:,)21.如图,在平面直角坐标系中,直线与轴、轴分别相交于、两点,与双曲线的一个交点为,且(1)

6、求点的坐标;(2)当时,求和值22.某校足球队需购买、两种品牌的足球已知品牌足球的单价比品牌足球的单价高20元,且用900元购买品牌足球的数量用720元购买品牌足球的数量相等(1)求、两种品牌足球的单价;(2)若足球队计划购买、两种品牌的足球共90个,且品牌足球的数量不小于品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元设购买品牌足球个,总费用为元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.如图,是的直径,直线与相切于点,直线与相切于点,点(异于点)在上,点在上,且,延长与相交于点e,连接并延长交于点(1)求证:是的切线;(2)求证:;(3)如图,连接并延长与分别相交于点、,连接若,求24.如图,抛物线经过点,顶点为,对称轴与轴相交于点,为线段的中点(1)求抛物线的解析式;(2)为线段上任意一点,为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论