第15讲 非常规思维问题-备考2022年中考数学《二轮冲刺核心重点难点热点15讲》(全国通用)原卷板_第1页
第15讲 非常规思维问题-备考2022年中考数学《二轮冲刺核心重点难点热点15讲》(全国通用)原卷板_第2页
第15讲 非常规思维问题-备考2022年中考数学《二轮冲刺核心重点难点热点15讲》(全国通用)原卷板_第3页
第15讲 非常规思维问题-备考2022年中考数学《二轮冲刺核心重点难点热点15讲》(全国通用)原卷板_第4页
第15讲 非常规思维问题-备考2022年中考数学《二轮冲刺核心重点难点热点15讲》(全国通用)原卷板_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、硬核:狙击2020中考数学重点/难点/热点一、轴对称/翻折的性质 1. 关于某条直线对称的两个图形是全等形; 2. 如果两个图形关于某条直线对称,那么对称轴是任意一对对应点连线段的垂直平分线; 3. 对称轴上的任意一点与每一对对应点所连线段相等; 4. 若对应线段或对应线段的延长线相交,则交点一定在对称轴上.二、梯形常见辅助线的作法 三、圆幂定理 四、正弦定理与余弦定理五、阿基米德折弦定理【例题1】(1)如图1,四边形abcd是菱形,bad=bcd=60°,当ac=12时,则bcd的周长=_.(2)如图2,若四边形abcd不是菱形,bad=2acb=2acd=60°,ac=

2、12,判断bcd的周长是否发生变化,并说明理由。(3)如图2,在四边形abcd中,bad=acb=acd=45°,ac=12,求bcd的周长。 【变式1】已知:如图(1)在rtabc中,bac90°,abac,点d、e分别为线段bc上两动点,若dae45°(1)探究线段bd、de、ec三条线段之间的数量关系;(2)已知:如图(2),等边三角形abc中,点d、e在边ab上,且dce30°,请你找出一个条件,使线段de、ad、eb能构成一个等腰三角形,并求出此时等腰三角形顶角的度数 图(1) 图(2) 【例题2】如图,四边形abcd中,adbc,abc+dc

3、b90°,且bc2ad,以ab、bc、dc为边向外作正方形,其面积分别为s1、s2、s3,若s13,s39,则s2的值为_. 【变式2-1】如图所示梯形abcd中,abcd,a+b90°,abp,cdq,e,f分别为ab,cd的中点,求ef【变式2-2】如图,在梯形abcd中,adbc,求b、d【例题3】如图,pa切o于a,pbc是o的割线,如果pb2,pc4,则pa的长为【变式3-1】如图,cd是o的直径,以d为圆心的圆与o交于a、b两点,ab交cd于点e,cd交d于p,已知pc6,pe:ed2:1,则ab的长为()abcd【变式3-2】九年级学生小刚是一个喜欢看书的好学

4、生,他在学习完第二十四章圆后,在家里突然看到爸爸的初中数学书上居然还有一个相交弦定理(圆内的两条相交弦,被交点分成的两条线段长的积相等),非常好奇,仔细阅读原来就是:papbpcpd,小刚很想知道是如何证明的,可已证明部分污损看不清了,只看到辅助线的做法,分别连结ac、bd聪明的你一定能帮他证出,请在图1中做出辅助线,并写出详细的证明过程小刚又看到一道课后习题,如图2,ab是o弦,p是ab上一点,ab10cm,pa4cm,op5cm,求o的半径,愁坏了小刚,乐于助人的你肯定会帮助他,请写出详细的证明过程 【例题4】问题呈现:阿基米德折弦定理:如图1,ab和bc是o的两条弦(即折线abc是圆的一

5、条折弦),bcab,m是的中点,则从m向bc所作垂线的垂足d是折弦abc的中点,即cdab+bd下面是运用“截长法”证明cdab+bd的部分证明过程证明:如图2,在cb上截取cgab,连接ma,mb,mc和mgm是的中点,mamc(1)请按照上面的证明思路,写出该证明的剩余部分;实践应用:(2)如图3,已知abc内接于o,bcabac,d是的中点,依据阿基米德折弦定理可得图中某三条线段的等量关系为(3)如图4,已知等腰abc内接于o,abac,d为ab上一点,连接db,acd45°,aecd于点e,bdc的周长为4+2,bc2,请求出ac的长【变式4-1】我们知道,如图1,ab是o的

6、弦,点f是的中点,过点f作efab于点e,易得点e是ab的中点,即aeebo上一点c(acbc),则折线acb称为o的一条“折弦”(1)当点c在弦ab的上方时(如图2),过点f作efac于点e,求证:点e是“折弦acb”的中点,即aeec+cb(2)当点c在弦ab的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么ae、ec、cb满足怎样的数量关系?直接写出,不必证明(3)如图4,已知rtabc中,c90°,bac30°,rtabc的外接圆o的半径为2,过o上一点p作phac于点h,交ab于点m,当pab45°时,求ah的长 【

7、例题5】阅读下列材料,并完成相应的任务托勒密定理:托勒密(ptolemy)(公元90年公元168年),希腊著名的天文学家,他的要著作天文学大成被后人称为“伟大的数学书”,托勒密有时把它叫作数学文集,托勒密从书中摘出并加以完善,得到了著名的托勒密(ptolemy)定理托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和已知:如图1,四边形abcd内接于o,求证:abcd+bcadacbd下面是该结论的证明过程:证明:如图2,作baecad,交bd于点eabeacdabeacdabcdacbeacbade(依据1)baecadbae+eaccad+eac即baceadabcaed(依据

8、2)任务:(1)请继续完成上面的证明过程,并回答上述过程中的“依据1”和“依据2”分别是什么(2)当圆内接四边形abcd是矩形时,托勒密定理就是我们非常熟知的一个定理: (3)如图3,四边形abcd内接于o,ab3,ad5,bad60°,点c为的中点,求ac的长【变式5-1】问题探究:(1)已知:如图,abc中请你用尺规在bc边上找一点d,使得点a到点bc的距离最短(2)托勒密(ptolemy)定理指出,圆的内接四边形两对对边乘积的和等于两条对角线的乘积如图,p是正abc外接圆的劣弧bc上任一点(不与b、c重合),请你根据托勒密(ptolemy)定理证明:papb+pc问题解决:(3

9、)如图,某学校有一块两直角边长分别为30m、60m的直角三角形的草坪,现准备在草坪内放置一对石凳及垃圾箱在点p处,使p到a、b、c三点的距离之和最小,那么是否存在符合条件的点p?若存在,请作出点p的位置,并求出这个最短距离(结果保留根号);若不存在,请说明理由【例题6】如图,在rtabc中,以下是小亮探究与之间关系的方法:sina,sinb,c,c,根据你掌握的三角函数知识在图的锐角abc中,探究、之间的关系,并写出探究过程【变式6-1】观察与思考:阅读下列材料,并解决后面的问题在锐角abc中,a、b、c的对边分别是a、b、c,过a作adbc于d(如图(1),则,即adcsinb,adbsin

10、c,于是csinbbsinc,即,同理有:,所以即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素根据上述材料,完成下列各题(1)如图(2),abc中,b45°,c75°,bc60,则a;ac;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻某次巡逻中,如图(3),我渔政204船在c处测得a在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达b处,此时又测得钓鱼岛

11、a在的北偏西75°的方向上,求此时渔政204船距钓鱼岛a的距离ab(结果精确到0.01,)【变式6-2】在abc中,cosa,cosb,cosc,我们称为余弦定理,请用余弦定理完成下面的问题请用余弦定理完成下面的问题:(1)如图,已知def,e60°,de4,df,求ef的长度;(2)通过合理的构造,试求cos105°1. 如图,ab是圆o的直径,弦cdab于e,p是ba延长线上一点,连接pc交圆o于f,若pf7,fc13,pa:ae:eb2:4:1,则cd长为2. 定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦阿基米德折弦定理:如图1,ab和bc组成圆的

12、折弦,abbc,m是弧abc的中点,mfab于f,则affb+bc如图2,abc中,abc60°,ab8,bc6,d是ab上一点,bd1,作deab交abc的外接圆于e,连接ea,则eac°3. 如图,在rtabc中,acb90°,点d是ac上一点,以cd为直径的圆与ab相切于点e,若cd3,tanaed,则ad的长为4. 已知:如图,直角梯形abcd中adbc,a90°,cdcb2ad点q是ab边中点,点p在cd边上运动,以点p为直角顶点作直角mpn,mpn的两边分别与ab边、cb边交于点m、n(1)若点p与点d重合,点m在线段aq上,如图(1)求证:

13、(2)若点p是cd中点,点m在线段bq上,如图(2)线段mq、cn、bc的数量关系是:,并证明你的猜想5. 已知:如图所示,e是等腰梯形一腰cd的中点,efab,垂足为f,求证:s梯形abcdabef6. 如图,在o中,abac,点d是上一动点(点d不与c、b重合),连接da、db、dc,bac120°(1)若ac4,求o的半径;(2)写出da、db、dc之间的关系,并证明7. 如图:已知点a、b、c、d顺次在圆o上,abbd,bmac,垂足为m证明:amdc+cm8. 小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究(1)更换定理的题设和结论可以得到许多真命题如图1

14、,在o中,c是劣弧ab的中点,直线cdab于点e,则aebe请证明此结论;(2)从圆上任意一点出发的两条弦所组成的折线,成为该圆的一条折弦如图2,pa,pb组成o的一条折弦c是劣弧ab的中点,直线cdpa于点e,则aepe+pb可以通过延长db、ap相交于点f,再连接ad证明结论成立请写出证明过程;(3)如图3,papb组成o的一条折弦,若c是优弧ab的中点,直线cdpa于点e,则ae,pe与pb之间存在怎样的数量关系?写出结论,不必证明9. 阅读与思考:阿基米德(公元前287年一公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,阿基米

15、德流传于世的著作有10余种,多为希腊文手稿下面是阿基米德全集中记载的一个命题:ab是o的弦,点c在o上,且cdab于点d,在弦ab上取点e,使adde,点f是上的一点,且,连接bf可得bfbe(1)将上述问题中弦ab改为直径ab,如图1所示,试证明bfbe;(2)如图2所示,若直径ab10,eoob,作直线l与o相切于点f过点b作bpl于点p求bp的长10. 阅读下面的材料:如图(1),在以ab为直径的半圆o内有一点p,ap、bp的延长线分别交半圆o于点c、d求证:apac+bpbdab2证明:连接ad、bc,过p作pmab,则adbamp90°,点d、m在以ap为直径的圆上;同理:

16、m、c在以bp为直径的圆上由割线定理得:apacamab,bpbdbmba,所以,apac+bpbdamab+bmabab(am+bm)ab2当点p在半圆周上时,也有apac+bpbdap2+bp2ab2成立,那么:(1)如图(2)当点p在半圆周外时,结论apac+bpbdab2是否成立?为什么?(2)如图(3)当点p在切线be外侧时,你能得到什么结论?将你得到的结论写出来11. 已知o半径为r(1)如图1,过o内一点p作弦ab,连接op求证:papbr2op2(2)如图2,过o外一点p,作割线pab,求证:papbop2r212. (1)在abc中,角a、b、c所对的边分别为a,b,c,试利用所学知识证明:sabcabsincacsinbbcsina(2)在数学中人们把(1)的结论称之为正弦定理的三角形面积公式,它在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论