专题八与万有引力有关的问题_第1页
专题八与万有引力有关的问题_第2页
专题八与万有引力有关的问题_第3页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题一万有引力相关问题一、地球表面物体随地球自转地球表面上的物体随地球自转,物体受到的重力G只是地球对物体的 万有引力F的一个分力。万有引力的另一个分力是使物体随地球自转的向 心力fn。即F=G+fn由于fn<<G,可以认为重力近似等于万有引力,即GM2m mg,方向R可以认为是竖直向下。重力G的平衡力是地面对物体的支持力N。2R (R为地球半径,T为地球自转周期。)由于地球自转因素的影响,地球两极表面重力加速度g最大,赤道表面重力加速度g'最小,两者的差就是赤道处物体随地球自转的向心加速度an,即g g2_T:hO、重力加速度与物体离地面高度h或地面下深度d的关系若忽略地

2、球自转。设地球半径为R,地球表面A处重力加速度为g0o 设地面上空高h的B处重力加速度为gi;2+ GMm1R由一2mg, g 因此 gi2g°rrR h设地面下方深h的C处重力加速度为g2。由于质量均匀分布的球壳对壳内物体的万有引力为零,因 此上图中,C点以下白色部分地球对物体的引力就是该物体受到的重力,不同深度处对应的引起重力的地球质量Mr3,因此g GMr,得g2go综上所述,重力加速度g与离地心距离r的函数关系图线如右。*联想:均匀带正电的实心球体,各处场强E与到球心距离r的图线与上图完全相同!但要注意,如果是 均匀带正电金属球,内部场强就处处为零了!图线R左侧为零,只有R右

3、侧才与上面图线相同。三、人造卫星和宇宙速度绕地球做匀速圆周运动的人造卫星所受的万有引力就是向心力,也就是重力,即 F=G=fn。由此可推出二级公式:vJGMCM、T2 rGM,注意r、v、t、a是对应的。.gR 7.9km/s当r=R时,对应的速度就是第一宇宙速度V1GM R若给出了引力势能的表达式E,则可推出第二宇宙速度v讣空M 门v 112km/sp r R2GMR*联想:若某星球的第二宇宙速度大于光速,意味着任何物质都无法离开该星球,连光子都无法射出,即外界无法观测到该星球,这就是黑洞。形成黑洞的条件是人造卫星的变轨,分渐变和突变两类。渐变问题首先要分析是做离心运动还是做向心运动,即首先

4、要判定轨道半径r的变化是增大或减小。渐变过程的每一周仍可视为圆周运动,因此上述人造卫星的二级公式都能用。在分析渐变后能量变化时要注意,卫星的机械能可能不再守恒。动能、势能和机械能的变化要分别 用不同的方法判定:动能看速度大小的改变;势能看引力做功的正负; 机械能看有无其它能参与转化。比如:由于稀薄空气阻力而变轨,卫星将做向心运动,r减小,v增大,动能增加;引力做正功,势 能减少;有摩擦生热,即有机械能转化为内能,因此机械能减少。又如:按某种假说,万有引力常量G在逐渐变小,引起太阳系中地球到太阳距离会发生变化,这种 变轨是离心运动。突变往往发生在需要改变卫星轨道高度的时候。比如由近地圆轨道卫星经

5、过两次点火加速,变轨成 为圆轨道同步卫星;或者航天器要从太空返回地球时,由较高圆轨道变轨回地球,需要将发动机喷口改 为向前,向前喷出燃气,使卫星减速。*联想:与玻尔理论对照,卫星轨道的突变与电子在不同轨道间跃迁遵从同样的规律。四、双星问题双星的最大特点有两个:由于向心力是由双星间万有引力F提供的,因此两星所受的向心力大小F定相等。双星都绕空间同一个固定点做圆周运动,因此双星与该点总保持三点共线,在相同时间内转过的角 度必相等,即双星做匀速圆周运动的角速度3相等,周期T也相等。,° ,口1m2m1由 F=mr 32,得 r,得 r1L, r2L ;线速度 v=r rmm1 m2mi m

6、2m列方程时特别注意:万有引力部分的表达式中的r应该是双星间的距离,往往用L表示;某一星球 所需向心力的表达式中的r表示它们各自做圆周运动的半径,应分别记为、2, n+r2=L。*联想:如果是三星系统,则其中每颗星做圆周运动的向心力由另外两颗星对它的万有引力的合力提供。五、禾U用万有引力定律可以求中心星球的质量和密度设中心星球质量为M,半径为R,环绕星球质量为m,线速度为v,公转周期为T,两星球相距r, 根据万有引力定律:GMm2 r2mr T,得M2 ,GT由r、T可求出中心星球的质量。3 r3gt2r3GT2若将中心星球看做均匀球体,由M4 R3,可得中心星球的平均密度3如果环绕星球离中心

7、星球表面很近,满足rR,那么中心星球的平均密度 六、开普勒定律1 所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。2对任意一个行星,它与太阳连线在相等时间内扫过相等的面积(如右图, 在远地点和近地点处v*r-1)。3 所有行星轨道长半轴的三次方跟它的公转周期的二次方的比值都相等 (T 心 a3)。万有引力练习题1 假设地球和火星都绕太阳做匀速圆周运动,己知地球到太阳的距离小于火星到太阳的距离,那么 A 地球公转周期大于火星的公转周期B .地球公转的线速度小于火星公转的线速度C.地球公转的加速度小于火星公转的加速度D .地球公转的角速度大于火星公转的角速度2. 假设地球可视为质量均匀

8、分布的球体。已知地球表面重力加速度在两极的大小为 go、在赤道的大小 为g,地球自转的周期为T。则地球的半径为2 2 2 2A 4 2B (go g)T C goTD (g。g)T(go g)T24 24 24 23. 静止在地面上的物体随地球自转做匀速圆周运动。下列说法正确的是A .物体受到的万有引力和支持力的合力总是指向地心B. 物体做匀速圆周运动的周期与地球自转周期相等C .物体做匀速圆周运动的加速度等于重力加速度D.物体对地面压力的方向与万有引力的方向总是相同HC1>4. 理论上已经证明:质量分布均匀的球壳对壳内物体的万有引力为零。现假设 地球是一半径为R、质量分布均匀的实心球体

9、,O为球心,以O为原点建 立坐标轴Ox,如图甲所示。一个质量一定的小物体(假设它能够在地球内 部移动)在x轴上各位置受到的引力大小用F表示,则图乙所示的四个F 随x的变化关系图正确的是5木星绕太阳的公转,以及卫星绕木星的公转,均可以看做匀速圆周运动。已知万有引力常量,并且已 经观测到木星和卫星的公转周期。要求得木星的质量,还需要测量的物理量是A .太阳的质量B .卫星的质量C. 木星绕太阳做匀速圆周运动的轨道半径D.卫星绕木星做匀速圆周运动的轨道半径 6. (18分)万有引力定律揭示了天体运动规律与地球上物体运动规律具有内在一致性。(1)用一弹簧秤称量一个相对于地球静止的小物体的重量,随称量位

10、置的变化可能会有不同的结果。已 知地球质量为M,自转周期为T,万有引力常量为G。将地球视为半径为R,质量均匀分布的球体,不 考虑空气的影响。设在地球北极地面称量时,弹簧秤的读数是F0。a.若在北极上空高出地面h处称量,弹簧秤读数为求比值R / F。的表达式,并就h 1.0%R的情形算出具体数值(计算结果保留两位有效数字);b.若在赤道地面称量,弹簧秤的读数为F2,求比值F2/F0的表达式;(2) 设想地球绕太阳公转的圆周轨道半径为r,太阳的半径为RS和地球的半径R三者均减小为现 在的1.0%,而太阳和地球的密度均匀且不变。仅考虑太阳和地球间的相互作用,以现实地球的1年为 标准,计算"

11、设想地球”的一年将变为多长?7利用万有引力定律可以测量天体的质量。(1) 测地球的质量英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值, 他把自己的实验说成是“称量地球的质量”。已知地球表面重力加速度为g,地球半径为R,引力常量为G。若忽略地球自转的影响,求地球的 质量。(2) 测“双星系统”的总质量所谓“双星系统”,是指在相互间引力的作用下,绕连线上某点O做匀速圆 周运动的两个星球A和B,如图所示。已知A、B间距离为L, A、B绕O点运动 的周期均为T,引力常量为G,求A、B的总质量。(3) 测月球的质量若忽略其它星球的影响,可以将月球和地球看成“双星系统

12、”。已知月球的 公转周期为Ti,月球、地球球心间的距离为Li。你还可以利用(1)、 (2)中提供的信息,求月球的质 量。8 万有引力定律是科学史上最伟大的定律之一,禾U用它我们可以进行许多分析和预测。2016年3月8 日出现了 “木星冲日”。当地球位于太阳和木星之间且三者几乎排成一条直线时,天文学称之为“木星冲日”。木星与地球几乎在同一平面内沿同一方向绕太阳近似做匀速圆周运动,木星到太阳的距离 大约是地球到太阳距离的5倍。下列说法正确的是A .木星运行的加速度比地球的大B 木星运行的周期比地球的小C.下一次的“木星冲日”时间肯定在2017年D .下一次的“木星冲日”时间肯定在2018年9 航天

13、员王亚平曾经在天宫一号实验舱内进行了中国首次太空授课,通过几个趣味实验展示了物体在完 全失重状态下的一些物理现象。其中一个实验如图所示,将支架固定在桌面上,细绳一端系于支架上的O点,另一端拴着一颗钢质小球。现轻轻将绳拉直但未绷紧,小球被拉至图中a点或b点。根据所学的物理知识判断出现的现象是A .在a点轻轻放手,小球将竖直下落B 在a点沿垂直于绳子的方向轻推小球,小球将沿圆弧做往复摆动C.在b点轻轻放手,小球将沿圆弧做往复摆动D 在b点沿垂直于绳子的方向轻推小球,小球将做圆周运动10黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过 光学观测直接确定黑洞的存

14、在。严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提 出之前就有人利用牛顿力学体系预言过黑洞的存在。假定黑洞为一个质量分布均匀的球形天体。 我们知道,在牛顿体系中,当两个质量分别为mi、m2的质点相距为r时也会具有势能,称之为引 力势能,其大小为Ep Gmmi (规定无穷远处势能为零)。请你利用所学知识,推测质量为M' r的黑洞,之所以能够成为“黑”洞,其半径R最大不能超过多少?11假定地球为密度均匀分布的球体,忽略地球的自转,已知地球的半径为 R。理论和实验证明:质量均 匀分布的球壳对壳内物体的万有引力为零。求:地面上方高h的山顶A处和地面处重力加速度大小之比gA: go;

15、a.地面下方深h的矿井底B处和地面处重力加速度大小之比gB: go。图 14(a)b.若已知某单摆在地面处做简谐运动的周期与在某矿井底部做简谐运动的周期之比为k。求该矿 井底部离地面的深度do12. (20分)随着科学技术水平的不断进步,相信在不远的将来人 类能够实现太空移民。为此,科学家设计了一个巨型环状管道 式空间站。空间站绕地球做匀速圆周运动,人们生活在空间站的环形管道中,管道内部截面为圆形,直径可达几千米,如图14(a)所示。已知地球质量为M,地球 半径为R,空间站总质量为m, G为引力常量。空间站围绕地球做圆周运动的轨道半径为2R,求空间站在轨道上运行的线速度大小;为解决长期太空生活

16、的失重问题,科学家设想让空间站围绕通过环心并垂直于圆环平面的中心轴 旋转,使在空间站中生活的人们获得人工重力”。该空间站的环状管道内侧和外侧到转动中心的图 14(b)图 14(c)距离分别为ri、r2,环形管道壁厚度忽略不计,如图14(b)所v示。若要使人们感受到的 人工重力”与在地球表面上受到的环形管道重力一样(不考虑重力因地理位置不同而产生的差异且可认 为太空站自转时中心轴静止),则该空间站的自转周期应为多大;为进行某项科学实验,空间站需将运行轨道进行调整,先从半径为2R的圆轨道上的A点(近地点)进行第一次调速后 进入椭圆轨道。当空间站经过椭圆轨道B点(远地点)时, 再进行第二次调速后最终

17、进入半径为3R的圆轨道上。若上 述过程忽略空间站质量变化及自转产生的影响,且每次调速持续的时间很 短。 请说明空间站在这两次调速过程中,速度大小是如何变化的; 若以无 穷远为引力势 能零点,空 间站与地球 间的引力势 能为Ep程至少需要消耗多少能量。GMm,式中r表示空间站到地心的距离,求空间站为完成这一变轨过 r13我国北斗”卫星导航定位系统由5颗静止轨道卫星(赤道上空运行的同步卫星)和30颗非静止轨道 卫星组成。关于这5颗静止轨道卫星,下列说法中正确的是A 卫星的运行周期各不相同B 卫星的轨道半径各不相同C.卫星的线速度小于7.9 km/sD .卫星的向心加速度大于9.8m/V14. 我国

18、玉兔号”月球车被顺利送抵月球表面,并发回大量图片和信息。若该月球车在地球表面的重力为Gi,在月球表面的重力为G2。已知地球半径为Ri,月球半径为R?,地球表面处的重力加速度为g,则A. 玉兔号”月球车在地球表面与月球表面质量之比为GlG2B.地球的质量与月球的质量之比为GiR;G2R12C.地球表面处的重力加速度与月球表面处的重力加速度之比为GiD.地球的第一宇宙速度与月球的第一宇宙速度之比为Gi RG2 R;i5.甲、乙两颗人造卫星绕地球作圆周运动,周期之比为Ti:T; = i:8,则它们的轨道半径之 比和运 动速率之比分别为A. Ri: R2 = 1:4, vi: V2 =2 1B. Ri

19、: R2 =4 : i,vi: V2=2: iC. Ri: R2 = i : 4,vi: v2=i : 2D. Ri: R2 = 4 : i,vi: V2= i: 2i6.20i3年i2月2日i时30分,嫦娥三号探测器由长征三号乙运载火箭从西昌卫星发射中心发射,首 次实现月球软着陆和月面巡视勘察。嫦娥三号的部分飞行轨道示意图如图所示。假设嫦娥三号在圆QIffi地轨道和椭圆轨道上运动时,只受到月球的万有引力。下 列说法中正确的是A .嫦娥三号沿椭圆轨道从P点运动到Q点的过程中, 速度逐渐变小B .嫦娥三号沿椭圆轨道从P点运动到Q点的过程中, 月球的引力对其做负功C.若已知嫦娥三号在圆轨道上运行的

20、半径、周期和引 力常量,则可计算出月球的密度D .嫦娥三号在椭圆轨道经过P点时和在圆形轨道经过 P点时的加速度相等i7.关于万有引力定律的建立,下列说法中正确的是A. 卡文迪许仅根据牛顿第三定律推出了行星与太阳间引力大小跟行星与太阳间距离的平方成反比的 关系B. 月-地检验”表明物体在地球上受到地球对它的引力是它在月球上受到月球对它的引力的60倍C. 月-地检验”表明地面物体所受地球引力与月球所受地球引力遵从同样的规律D.引力常量G的大小是牛顿根据大量实验数据得出的18. 牛顿在发现万有引力定律过程中曾做过一个有名的验证:月-地检验。假设维持月球绕地球运动的 力与使得苹果下落的力真的是同一种力

21、,同样遵从“平方反比”的规律,那么由于月球轨道半径约 为地球半径(苹果到地心的距离)的60倍,月球公转的向心加速度ai与苹果下落的加速度g的比 将是多少?当时已经测定了地面附近的重力加速度约为 g=10m/j2,月球绕地球的公转周期约为 T=27天(约2.3X 106s),月球绕地球公转半径约为r=3.8X 105km,根据以上三个数据,月球公转的 向心加速度a2与苹果下落的加速度g的比是多少?由以上两问的结果可以得出什么结论?19人造卫星在绕地球运行时,会遇到稀薄大气的阻力。如果不进行必要的轨道维持,稀薄大气对卫星的 这种微小阻力会导致卫星轨道半径逐渐减小,以至最终落回地球。这个过程是非常漫

22、长的,因此卫 星每一圈的运动仍可以认为是匀速圆周运动。规定两质点相距无穷远时的引力势能为零,理论上可 以得出质量分别m1、m2的两个物体相距r时,系统的引力势能为E 如叫。已知人造卫星的 r质量为m,某时刻绕地球做匀速圆周运动的轨道半径为r,地球半径为R,地球表面附近的重力加速 度为g。求此时刻卫星的瞬时速度大小v和卫星的机械能E机;由于大气阻力的影响,卫星的轨道半径逐渐减小。求在这个过程中,万有引力做的功 WG与克服 大气阻力做的功Wf的比;已知地球半径为6400km=当卫星轨道离地面的高度为200km时,由于大气阻力的影响,测得卫 星每绕地球一周,轨道高度降低20m。试估算在此高度大气对卫

23、星的阻力大小f与卫星所受地球 引力大小F的比值k (答案保留1位有效数字)。练习答案:1.D 2B 3B 4A 5D6. (1)设小物体质量为m。在北极上空高出地面h处G- F1(R h)FiR21F0忌 O.98F。(R h)2b.在赤道地面,小物体随着地球自转做匀速圆周运动,受到万有引力和弹簧秤的作用力,有 -Mm厂4 'G 2F2m 2r2t2F2解得-1卜。2lR,334 R2gmt(2)地球绕太阳做匀速圆周运动,受到太阳的万有引力。设太阳质量为 MS,地球质量为M, Mr耳T;地球公转周期为Te,有GMsM2r3 r3'GPRI其中 为太阳的密度。由上式可知,地球公转周期Te仅与太阳的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论