下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上全等三角形的性质和判定定理全等三角形的性质及各种三角形全等的判定方法,如何利用全等三角形进行证明学习利用三角形全等推导出角平分线的性质及判定是本章学习的重点。全等三角形是研究图形的重要工具,是几何学习中最基础的知识,为今后学习四边形、圆等内容打下基础下面我们主要讨论一下全等三角形的性质和判定定理的复习。 首先,我们要明白这两节课的重点是全等三角形的性质及各种判定三角形全等的方法,难点是根据不同的条件合理选用三角形全等的判定方法,特别是对于“SSA”不能判定三角形全等的认识。这里我们列出重要知识点和基本的解题思路。1. 全等三角形性质:全等三角形的对应边相等;对应角相等
2、。2. 全等三角形的判定方法: 三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”). 两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”). 两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”). 两角和其中一个角的对边分别相等的两个三角形全等(可以简写成“角角边”或“AAS”).斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).3.证明三角形全等的基本思路:(1)已知两边: (2)已知一边一角 (3)已知两角 三角形的全等的判定要根据题目的具体情况确定采用SAS,ASA,AAS,SSS,HL中的
3、哪个定理,而且这几个判定方法往往要结合其性质综合解题下面我们举几个具体的例子来说明全等三角形的性质和判定定理的应用。 例1 如图11-113所示,BD,CE分别是ABC的边AC和AB上的高,点P在BD的延线上,BPAC,点Q在CE上,CQAB (1)求证APAQ;(2)求证APAQ 分析 (1)欲证APAQ,只需证对应的两个三角形全等,即证ABPQCA即可(2)在(1)的基础上证明PAQ90°证明:(1)BD,CE分别是ABC的边AC,AB上的高, ADBAEC90° 在RtAEC和RtADB中, ABP90°BAD,ACE90°一DAB, ABPACE
4、 在ABP和QCA中,BPCA(已知),ABPACE(已证),ABQC(已知),ABPQCA(SAS)APAQ(全等三角形的对应边相等)(2)ABPQCA,PCAQ(全等三角形的对应角相等)又PPAD90°,CAQPAD90°,即QAP90°,APAQ例2 若两个锐角三角形的两边和其中一边上的高分别对应相等试判断这两个三角形的第三边所对的角之间的关系,并说明理由分析 运用全等三角形的判定和性质,探讨两角之间的关系,题中没给图形,需自己根据题意画出符合题意的图形,结合图形写出已知、结论 已知:如图11-114所示,在ABC和ABC中,ABAB,BCBC,AD,AD分
5、别是BC,BC上的高,且ADAD判断B和B的关系 解:BB理由如下:AD,AD分别是BC,BC边上的高, ADBADB90° 在RtADB和RtADB中,RtADBRtADB( HL)BB(全等三角形的对应角相等)规律·方法 边、角、中线、角平分线、高是三角形的基本元素,从以上诸元素中选取三个条件组合,可以得到关于三角形全等判定的若干命题例3 如图11-115所示,已知四边形纸片ABCD中,ADBC,将ABC,DAB分别对折,如果两条折痕恰好相交于DC上一点E,点C,D都落在AB边上的F处,你能获得哪些结论?分析 对折前后重合的部分是全等的,从线段关系、角的关系、面积关系等
6、不同方面进行探索,以获得更多的结论,这是一道开放性试题解:ADAF,EDEFEC,BCBF AD十BCAB,DEEC2EF 12,34,DAFE,CEFB,DEAFEA, CEBFEB AEB90°或EAEB SDAESEAF,SECBSEFB.【解题策略】 本题融操作、观察、猜想、推理于一体,需要具有一定的综合能力推理论证既是说明道理,也是探索、发现的途径善于在复杂的图形中发现、分解、构造基本的全等三角形是解题的关键需要注意的是,通常面临以下情况时,我们才考虑构造全等三角形:(1)给出的图形中没有全等三角形,而证明结论需要全等三角形(2)从题设条件中无法证明图形中的三角形全等,证明需要另行构造全等三角形全等三角形的知识在实际问题中的应用是常见的一种类型题,解题的是键是将实际问题抽象成几何问题来解决,一般难度不大 例4 如图11-116所示,太阳光线AC与AC是平行的,同一时刻两根高度相同的木杆在太阳光照射下的影子一样长吗?说说你的理由分析 本题欲确定影子一样长,实际就是证明BC与BC相等,而要证明两条线段相等,常常证明它们所在的两个三角形全等解:影子一样长理由如下: 因为ABBC,ABBC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年经营权移交协议参考样式
- 2024食品零售商副食供应协议范本
- 2024年承诺书协议模板
- 2024年专业混凝土加工服务协议模板
- 2024年高端定制瓶装水订购协议
- 2024年二手挖掘机交易协议2
- 2024年期品牌双经销商协议规范
- 2024年装修项目合作框架协议样例
- DB11∕T 1707-2019 有轨电车工程设计规范
- 2024年度线上线下推广协作协议
- 登西台恸哭记
- 网店运营与推广
- GB/T 17799.2-2023电磁兼容通用标准第2部分:工业环境中的抗扰度标准
- 2024年公务员(国考)之行政职业能力测验模拟考试试卷B卷含答案
- 通用版浙江“千万工程”经验案例微课PPT
- 走进芭蕾-中外芭蕾经典作品鉴赏知到章节答案智慧树2023年华南师范大学
- 环保产品管理规范
- 中医确有专长综述范文(5篇)
- 非小细胞肺癌NCCN指南解读
- EBO管理体系与案例分享
- 拦砂坝施工设计方案
评论
0/150
提交评论