




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 1 页(共 28 页)2019 年江苏省常州市中考数学试卷一、选择题(本大题共8 小题,每小题2 分,共 16 分。在每小题所给出的四个选项中,只有一项是正确的)1 ( 2 分) 3 的相反数是()a bc 3 d3 2 ( 2 分)若代数式有意义,则实数x 的取值范围是()ax 1 bx3 cx 1 dx3 3 ( 2 分)如图是某几何体的三视图,该几何体是()a圆柱b正方体c圆锥d球4 ( 2 分)如图,在线段pa、pb、pc、 pd 中,长度最小的是()a线段 pa b线段 pb c线段 pc d线段 pd 5 ( 2 分) 若 abc abc, 相似比为1: 2, 则 abc 与
2、abc的周长的比为 ()a2:1 b1:2 c4:1 d1:4 6 ( 2 分)下列各数中与2+的积是有理数的是()a2+ b2 c d27 ( 2 分)判断命题“如果n1,那么 n210”是假命题,只需举出一个反例反例中的 n 可以为()a 2 b c0 d8 ( 2 分)随着时代的进步,人们对pm2.5(空气中直径小于等于2.5 微米的颗粒)的关注第 2 页(共 28 页)日益密切某市一天中pm2.5 的值 y1(ug/m3)随时间t(h)的变化如图所示,设y2 表示 0 时到 t 时 pm2.5 的值的极差(即0 时到 t 时 pm2.5 的最大值与最小值的差),则 y2与 t 的函数关
3、系大致是()abcd二、填空题(本大题共10 小题,每小题2 分,共 20 分。不需写出解答过程,请把答案直接填写在答题卡相应位置上)9 ( 2 分)计算: a3a10 (2 分) 4 的算术平方根是11 (2 分)分解因式:ax24a12 (2 分)如果 35,那么 的余角等于13 (2 分)如果ab20,那么代数式1+2a2b 的值是14 (2 分)平面直角坐标系中,点p( 3,4)到原点的距离是15 (2 分)若是关于 x、y 的二元一次方程ax+y 3 的解,则a16 (2 分)如图, ab 是o 的直径, c、d 是o 上的两点,aoc120,则 cdb 第 3 页(共 28 页)1
4、7 (2 分)如图,半径为的o 与边长为8 的等边三角形abc 的两边 ab、bc 都相切,连接 oc,则 tanocb18 (2 分)如图, 在矩形 abcd 中,ad3ab3,点 p 是 ad 的中点, 点 e 在 bc 上,ce2be,点 m、 n 在线段 bd 上若 pmn 是等腰三角形且底角与dec 相等,则 mn 三、解答题(本大题共10 小题,共 84 分。请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19 (8 分)计算:(1)0+()1()2;(2) (x1) (x+1) x(x1) 20 (6 分)解不等式组并把解集在数轴上表示出来21 (
5、8 分)如图,把平行四边形纸片abcd 沿 bd 折叠,点 c 落在点 c处, bc与 ad 相交于点e( 1 )连接 ac,则 ac与 bd 的位置关系是;( 2 )eb 与 ed 相等吗?证明你的结论22 (8 分)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分第 4 页(共 28 页)学生的捐款数(单位:元),并绘制成下面的统计图(1)本次调查的样本容量是,这组数据的众数为元;(2)求这组数据的平均数;(3)该校共有600 名学生参与捐款,请你估计该校学生的捐款总数23 (8 分)将图中的a 型(正方形) 、b 型(菱形)、c 型(等腰直角三角形)纸片分别放在 3
6、个盒子中,盒子的形状、大小、质地都相同,再将这3 个盒子装入一只不透明的袋子中(1)搅匀后从中摸出1 个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是;(2)搅匀后先从中摸出1 个盒子(不放回) ,再从余下的2 个盒子中摸出1 个盒子,把摸出的 2 个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率(不重叠无缝隙拼接)24 (8 分)甲、乙两人每小时共做30 个零件,甲做180 个零件所用的时间与乙做120 个零件所用的时间相等甲、乙两人每小时各做多少个零件?25 (8 分)如图,在 ? oabc 中, oa2, aoc45,点 c 在 y 轴上,点d 是 bc 的中点,
7、反比例函数y(x0)的图象经过点a、 d( 1 )求 k 的值;( 2 )求点 d 的坐标第 5 页(共 28 页)26 (10 分) 【阅读】数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”“算两次”也称做富比尼原理,是一种重要的数学思想【理解】( 1 )如图 1,两个边长分别为a、b、c 的直角三角形和一个两条直角边都是c 的直角三角形拼成一个梯形用两种不同的方法计算梯形的面积,并写出你发现的结论;( 2 )如图 2,n 行 n 列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式: n2;【运用
8、】(3)n 边形有 n 个顶点,在它的内部再画m 个点,以( m+n)个点为顶点,把n 边形剪成若干个三角形,设最多可以剪得y 个这样的三角形当n3,m3 时,如图 3,最多可以剪得7 个这样的三角形,所以y7 当 n4,m2 时,如图4, y;当 n5,m时, y9; 对于一般的情形,在n 边形内画 m 个点,通过归纳猜想,可得y(用含 m、n 的代数式表示) 请对同一个量用算两次的方法说明你的猜想成立27 (10 分)如图,二次函数y x2+bx+3 的图象与x 轴交于点 a、 b,与 y 轴交于点c,点 a 的坐标为(1,0) ,点 d 为 oc 的中点,点p 在抛物线上(1)b;(2)
9、若点 p 在第一象限,过点p 作 phx 轴,垂足为h,ph 与 bc、 bd 分别交于点第 6 页(共 28 页)m、n是否存在这样的点p,使得 pm mnnh ?若存在,求出点p 的坐标;若不存在,请说明理由;(3)若点 p 的横坐标小于3,过点 p 作 pqbd,垂足为q,直线 pq 与 x 轴交于点r,且 spqb 2sqrb,求点 p 的坐标28 (10 分)已知平面图形s,点 p、q 是 s 上任意两点,我们把线段pq 的长度的最大值称为平面图形s 的“宽距”例如,正方形的宽距等于它的对角线的长度(1)写出下列图形的宽距: 半径为 1 的圆:; 如图 1,上方是半径为1 的半圆,下
10、方是正方形的三条边的“窗户形“:;(2)如图 2,在平面直角坐标系中,已知点a( 1,0) 、b( 1,0) ,c 是坐标平面内的点,连接ab、bc、ca 所形成的图形为s,记 s 的宽距为d 若 d2,用直尺和圆规画出点c 所在的区域并求它的面积(所在区域用阴影表示); 若点 c 在m 上运动, m 的半径为 1,圆心 m 在过点( 0,2)且与 y 轴垂直的直线上对于 m 上任意点c,都有 5d8,直接写出圆心m 的横坐标x 的取值范围第 7 页(共 28 页)2019 年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(本大题共8 小题,每小题2 分,共 16 分。在每小题所给出的四
11、个选项中,只有一项是正确的)1 ( 2 分) 3 的相反数是()a b c3 d 3 【分析】 根据相反数的定义:只有符号不同的两个数称互为相反数计算即可【解答】 解:( 3)+30 故选: c【点评】 本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单2 ( 2 分)若代数式有意义,则实数x 的取值范围是()ax 1 bx3 cx 1 dx3 【分析】 分式有意义的条件是分母不为0【解答】 解:代数式有意义,x 30,x 3故选: d【点评】 本题运用了分式有意义的条件知识点,关键要知道分母不为0 是分式有意义的条件3 ( 2 分)如图是某几何体的三视图,该几何体是(
12、)a圆柱b正方体c圆锥d球【分析】 通过俯视图为圆得到几何体为圆柱或球,然后通过主视图和左视图可判断几何体为圆锥第 8 页(共 28 页)【解答】 解:该几何体是圆柱故选: a【点评】 本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助4 ( 2 分)如图,在线段pa、pb、pc、pd 中,长度最小的是()a线段 pa b线段 pb c线段 pc d线段 pd 【分析】 由垂线段最短可解【解答】 解:由直线外一点到直线上所有点的连线中,
13、垂线段最短,可知答案为b 故选: b【点评】 本题考查的是直线外一点到直线上所有点的连线中,垂线段最短,这属于基本的性质定理,属于简单题5 ( 2 分) 若 abc abc, 相似比为1: 2, 则 abc 与 abc的周长的比为 ()a2:1 b1:2 c4:1 d1:4 【分析】 直接利用相似三角形的性质求解【解答】 解: abc abc,相似比为1:2, abc 与 ab c的周长的比为1:2 故选: b【点评】 本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等
14、于相似比相似三角形的面积的比等于相似比的平方6 ( 2 分)下列各数中与2+的积是有理数的是()a2+ b2 c d2【分析】 利用平方差公式可知与2+的积是有理数的为2;第 9 页(共 28 页)【解答】 解:( 2+) ( 2) 43 1;故选: d【点评】 本题考查分母有理化;熟练掌握利用平方差公式求无理数的无理化因子是解题的关键7 ( 2 分)判断命题“如果n1,那么 n210”是假命题,只需举出一个反例反例中的 n 可以为()a 2 b c0 d【分析】 反例中的n 满足n1,使 n2 10,从而对各选项进行判断【解答】 解:当n 2 时,满足n1,但 n2 130,所以判断命题“如
15、果n1,那么n2 10”是假命题,举出n2 故选: a【点评】 本题考查了命题与定理:命题的“真”“假”是就命题的内容而言任何一个命题非真即假要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可8 ( 2 分)随着时代的进步,人们对pm2.5(空气中直径小于等于2.5 微米的颗粒)的关注日益密切某市一天中pm2.5 的值 y1(ug/m3)随时间t(h)的变化如图所示,设y2 表示 0 时到 t 时 pm2.5 的值的极差(即0 时到 t 时 pm2.5 的最大值与最小值的差),则 y2与 t 的函数关系大致是()abcd【分析】 根据极差的定义,分别从t0
16、、0t10、10 t20 及 20t24 时,极差y2第 10 页(共 28 页)随 t 的变化而变化的情况,从而得出答案【解答】 解:当t0 时,极差y28585 0,当 0t10 时,极差y2 随 t 的增大而增大,最大值为43;当 10t20 时,极差y2 随 t 的增大保持43 不变;当 20t24 时,极差y2 随 t 的增大而增大,最大值为98;故选: b【点评】 本题主要考查极差,解题的关键是掌握极差的定义及函数图象定义与画法二、填空题(本大题共10 小题,每小题2 分,共 20 分。不需写出解答过程,请把答案直接填写在答题卡相应位置上)9 ( 2 分)计算: a3aa2 【分析
17、】 直接利用同底数幂的除法运算法则计算得出答案【解答】 解: a3aa2 故答案为: a2【点评】 此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键10 (2 分) 4 的算术平方根是 2 【分析】 根据算术平方根的含义和求法,求出4 的算术平方根是多少即可【解答】 解: 4 的算术平方根是2 故答案为: 2【点评】 此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确: 被开方数 a 是非负数; 算术平方根a 本身是非负数求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找11 (2 分)分解因式:ax24a
18、 a(x+2) (x2)【分析】 先提取公因式a,再对余下的多项式利用平方差公式继续分解【解答】 解: ax24a,a(x24) ,a(x+2) (x2) 【点评】 本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止第 11 页(共 28 页)12 (2 分)如果 35,那么 的余角等于 55 【分析】 若两角互余,则两角和为90,从而可知 的余角为90减去 ,从而可解【解答】 解: 35, 的余角等于90 35 55故答案为: 55【点评】 本题考查的两角互余的基本概念,题目属于基础概念题,比较
19、简单13 (2 分)如果ab20,那么代数式1+2a2b 的值是 5 【分析】 将所求式子化简后再将已知条件中ab 2 整体代入即可求值;【解答】 解: a b20,ab2,1+2a2b1+2(ab) 1+45;故答案为5【点评】 本题考查代数式求值;熟练掌握整体代入法求代数式的值是解题的关键14 (2 分)平面直角坐标系中,点p( 3,4)到原点的距离是 5 【分析】 作 pax 轴于a,则pa4,oa3,再根据勾股定理求解【解答】 解:作 pax 轴于 a,则 pa4,oa3 则根据勾股定理,得op5故答案为5【点评】 此题考查了点的坐标的知识以及勾股定理的运用点到x 轴的距离即为点的纵坐
20、标的绝对值15 (2 分)若是关于 x、y 的二元一次方程ax+y 3 的解,则a 1 【分析】 把代入二元一次方程ax+y3 中即可求a 的值【解答】 解:把代入二元一次方程ax+y3 中,a+23,解得 a1故答案是: 1【点评】 本题运用了二元一次方程的解的知识点,运算准确是解决此题的关键16 (2 分)如图, ab 是o 的直径, c、d 是o 上的两点, aoc120,则 cdb第 12 页(共 28 页)30 【分析】 先利用邻补角计算出boc,然后根据圆周角定理得到cdb 的度数【解答】 解: boc180 aoc180 120 60, cdbboc30故答案为30【点评】 本题
21、考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半17 (2 分)如图,半径为的o 与边长为8 的等边三角形abc 的两边 ab、bc 都相切,连接 oc,则 tanocb【分析】 根据切线长定理得出obc oba abc30,解直角三角形求得bd,即可求得cd,然后解直角三角形ocd 即可求得tanocb 的值【解答】 解:连接ob,作odbc 于 d,o 与等边三角形abc 的两边ab、 bc 都相切, obc obaabc 30,tanobc,bd3,cdbcbd835,tanocb第 13 页(共 28 页)故答案为【点评】 本题考查了切线的性
22、质,等边三角形的性质,解直角三角形等,作出辅助线构建直角三角形是解题的关键18 (2 分)如图, 在矩形 abcd 中,ad3ab3,点 p 是 ad 的中点, 点 e 在 bc 上,ce2be,点 m、 n 在线段 bd 上若 pmn 是等腰三角形且底角与dec 相等,则 mn 6 【分析】 作 pfmn 于 f,则 pfm pfn90,由矩形的性质得出abcd,bcad3ab 3 , a c 90,得出 abcd,bd10,证明 pdf bda,得出,求出 pf,证出 ce2cd,由等腰三角形的性质得出 mfnf, pnf dec,证出 pnf dec,得出2,求出 nf 2pf 3,即可
23、得出答案【解答】 解:作 pf mn 于 f,如图所示:则 pfm pfn90,四边形abcd 是矩形,abcd,bcad3ab 3 , a c90,abcd,bd10,点p 是 ad 的中点,pdad, pdf bda, pdf bda,第 14 页(共 28 页),即,解得: pf,ce 2be,bc ad3be,becd,ce 2cd, pmn 是等腰三角形且底角与dec 相等, pfmn,mf nf, pnf dec, pfn c90, pnf dec,2,nf 2pf3,mn2nf6;故答案为: 6【点评】 本题考查了矩形的性质、等腰三角形的性质、相似三角形的判定与性质、勾股定理等知
24、识;熟练掌握矩形的性质和等腰三角形的性质,证明三角形相似是解题的关键三、解答题(本大题共10 小题,共 84 分。请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19 (8 分)计算:(1)0+()1()2;(2) (x1) (x+1) x(x1) 【分析】 根据零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则准确计算即可;第 15 页(共 28 页)【解答】 解:( 1) 0+()1()2 1+230;(2) (x1) (x+1) x(x1) x2 1x2+xx1;【点评】 本题考查实数的运算,整式的运算;熟练掌握零指数幂,负指数幂,多项式乘以多项式(
25、单项式)的运算法则是解题的关键20 (6 分)解不等式组并把解集在数轴上表示出来【分析】 分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【解答】 解:解不等式x+10,得: x 1,解不等式3x8 x,得: x 2,不等式组的解集为1x 2,将解集表示在数轴上如下:【点评】 本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键21 (8 分)如图,把平行四边形纸片abcd 沿 bd 折叠,点 c 落在点 c处, bc与 ad 相交于点e( 1
26、)连接 ac,则 ac与 bd 的位置关系是ac bd ;( 2 )eb 与 ed 相等吗?证明你的结论【分析】 ( 1)根据adcb,edeb,即可得到ae ce,再根据三角形内角和定理,即可得到 eac eca ebd edb ,进而得出acbd;(2)依据平行线的性质以及折叠的性质,即可得到edb ebd,进而得出bede第 16 页(共 28 页)【解答】 解:( 1)连接 ac,则 ac与 bd 的位置关系是ac bd,故答案为: ac bd;(2)eb 与 ed 相等由折叠可得,cbd cbd ,ad bc, adb cbd, edb ebd,bede【点评】 本题主要考查了折叠问
27、题以及平行四边形的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等22 (8 分)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图(1)本次调查的样本容量是30 ,这组数据的众数为10 元;(2)求这组数据的平均数;(3)该校共有600 名学生参与捐款,请你估计该校学生的捐款总数【分析】(1)由题意得出本次调查的样本容量是6+11+8+5 30,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果;(3)由总人数乘以平均数即可得出答案【解答】 解:( 1)本次调查的样本容
28、量是6+11+8+5 30,这组数据的众数为10 元;第 17 页(共 28 页)故答案为: 30,10;(2)这组数据的平均数为 12(元);(3)估计该校学生的捐款总数为600 127200(元) 【点评】 此题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想23 (8 分)将图中的a 型(正方形) 、b 型(菱形)、c 型(等腰直角三角形)纸片分别放在 3 个盒子中,盒子的形状、大小、质地都相同,再将这3 个盒子装入一只不透明的袋子中(1)搅匀后从中摸出1
29、 个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是;(2)搅匀后先从中摸出1 个盒子(不放回) ,再从余下的2 个盒子中摸出1 个盒子,把摸出的 2 个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率(不重叠无缝隙拼接)【分析】(1)依据搅匀后从中摸出1 个盒子,可能为a 型(正方形)、b 型(菱形)或c 型(等腰直角三角形)这3 种情况,其中既是轴对称图形又是中心对称图形的有2 种,即可得到盒中的纸片既是轴对称图形又是中心对称图形的概率;(2)依据共有6 种等可能的情况,其中拼成的图形是轴对称图形的情况有2 种: a 和c,c 和 a,即可得到拼成的图形是轴对称图形的概
30、率【解答】 解:(1)搅匀后从中摸出1 个盒子,可能为a 型(正方形)、b 型(菱形)或c 型(等腰直角三角形)这3 种情况,其中既是轴对称图形又是中心对称图形的有2 种,盒中的纸片既是轴对称图形又是中心对称图形的概率是;故答案为:;(2)画树状图为:第 18 页(共 28 页)共有6 种等可能的情况,其中拼成的图形是轴对称图形的情况有2 种: a 和 c, c 和 a,拼成的图形是轴对称图形的概率为【点评】 本题主要考查了概率公式,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图24 (8
31、分)甲、乙两人每小时共做30 个零件,甲做180 个零件所用的时间与乙做120 个零件所用的时间相等甲、乙两人每小时各做多少个零件?【分析】 设甲每小时做x 个零件,则乙每小时做(30 x)个零件,根据关键语句“甲做180 个零件所用的时间与乙做120 个零件所用的时间相等”列出方程,再求解即可【解答】 解:设甲每小时做x 个零件,则乙每小时做(30 x)个零件,由题意得:,解得: x18,经检验: x18 是原分式方程的解,则 301812(个) 答:甲每小时做18 个零件,则乙每小时做12 个零件【点评】 此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注
32、意检验25 (8 分)如图,在 ? oabc 中, oa2, aoc45,点 c 在 y 轴上,点d 是 bc 的中点,反比例函数y(x0)的图象经过点a、 d( 1 )求 k 的值;( 2 )求点 d 的坐标第 19 页(共 28 页)【分析】 ( 1)根据已知条件求出a 点坐标即可;(2)四边形oabc 是平行四边形oabc,则有 abx 轴,可知 b 的横纵标为2,d 点的横坐标为1,结合解析式即可求解;【解答】 解:( 1) oa2, aoc45,a(2, 2) ,k 4,y;(2)四边形oabc 是平行四边形oabc,abx 轴,b 的横纵标为2,点d 是 bc 的中点,d 点的横坐
33、标为1,d(1, 4) ;【点评】 本题考查反比例函数的图象及性质,平行四边形的性质;利用平行四边形的性质确定点b 的横坐标是解题的关键26 (10 分) 【阅读】数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”“算两次”也称做富比尼原理,是一种重要的数学思想【理解】( 1 )如图 1,两个边长分别为a、b、c 的直角三角形和一个两条直角边都是c 的直角三角形拼成一个梯形用两种不同的方法计算梯形的面积,并写出你发现的结论;( 2 )如图 2,n 行 n 列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得
34、等式: n21+3+5+7+ +2n1;第 20 页(共 28 页)【运用】(3)n 边形有 n 个顶点,在它的内部再画m 个点,以( m+n)个点为顶点,把n 边形剪成若干个三角形,设最多可以剪得y 个这样的三角形当n3,m3 时,如图 3,最多可以剪得7 个这样的三角形,所以y7 当 n4,m2 时,如图4,y 6 ;当n5,m 3 时, y9; 对于一般的情形,在n 边形内画m 个点,通过归纳猜想,可得yn+2( m 1)(用含 m、n 的代数式表示) 请对同一个量用算两次的方法说明你的猜想成立【分析】 ( 1)此等腰梯形的面积有三部分组成,利用等腰梯形的面积等于三个直角三角形的面积之和
35、列出方程并整理(2)由图可知n 行 n 列的棋子排成一个正方形棋子个数为n2,每层棋子分别为1,3,5, 7, 2n1故可得用两种不同的方法计算棋子的个数,即可解答(3)根据探画出图形究不难发现,三角形内部每增加一个点,分割部分增加2 部分,即可得出结论【解答】 解:( 1)有三个rt其面积分别为ab,ab 和c2直角梯形的面积为(a+b) (a+b) 由图形可知:(a+b) (a+b)ab+ab+c2整理得( a+b)22ab+c2,a2+b2+2ab 2ab+c2,a2+b2c2故结论为:直角长分别为a、b 斜边为c 的直角三角形中a2+b2c2(2)n 行 n 列的棋子排成一个正方形棋子
36、个数为n2,每层棋子分别为1,3,5,7,2n1由图形可知:n21+3+5+7+ +2n1 故答案为1+3+5+7+2n1(3) 如图4,当 n4,m2 时, y 6,第 21 页(共 28 页)如图5,当n5, m3 时, y9 方法 1对于一般的情形,在n 边形内画m 个点,第一个点将多边形分成了n 个三角形,以后三角形内部每增加一个点,分割部分增加2 部分,故可得yn+2(m1) 方法 2以 abc 的二个顶点和它内部的m 个点,共( m+3)个点为顶点,可把abc 分割成 3+2(m 1)个互不重叠的小三角形以四边形的4 个顶点和它内部的m 个点,共(m+4)个点为顶点,可把四边形分割
37、成4+2(m1)个互不重叠的小三角形故以n 边形的 n 个顶点和它内部的m 个点,共( m+n)个点作为顶点,可把原n 边形分割成n+2 (m1)个互不重叠的小三角形故可得y n+2(m1) 故答案为: 6,3; n+2(m1) 【点评】 本题考查了图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键27 (10 分)如图,二次函数y x2+bx+3 的图象与x 轴交于点 a、 b,与 y 轴交于点c,点 a 的坐标为(1,0) ,点 d 为 oc 的中点,点p 在抛物线上(1)b2 ;(2)若点 p 在第一象限,过点p 作 phx 轴,垂足为h,ph 与 bc、bd 分别交于点m、n
38、是否存在这样的点p,使得 pm mnnh?若存在,求出点p 的坐标;若不存在,请说明理由;(3)若点 p 的横坐标小于3,过点 p 作 pqbd,垂足为 q,直线 pq 与 x 轴交于点 r,且 spqb 2sqrb,求点 p 的坐标第 22 页(共 28 页)【分析】 ( 1)把点a 坐标代入二次函数解析式即求得b 的值(2)求点 b、c、d 坐标,求直线bc、bd 解析式设点p 横坐标为t,则能用t 表示点p、m、n、h 的坐标,进而用含t 的式子表示pm、 mn、 nh 的长以pmmn 为等量关系列得关于t 的方程,求得t 的值合理(满足p 在第一象限) ,故存在满足条件的点p,且求得点
39、 p 坐标(3)过点 p 作 pfx 轴于 f,交直线bd 于 e,根据同角的余角相等易证epqobd,所以 cosepqcosobd,即在rtpqe 中, cosepq;在 rtpfr 中, cosrpf,进而得 pqpe,prpf设点 p 横坐标为 t,可用 t 表示 pe、pf,即得到用t 表示 pq、pr又由 spqb2sqrb 易得 pq 2qr要对点p 位置进行分类讨论得到pq 与 pr 的关系,即列得关于t 的方程求得t 的值要注意是否符合各种情况下t 的取值范围【解答】 解:( 1)二次函数y x2+bx+3 的图象与x 轴交于点a( 1, 0) 1b+30 解得: b2 故答
40、案为: 2( 2 )存在满足条件呢的点p,使得 pmmnnh二次函数解析式为y x2+2x+3 当 x0 时 y3,c(0, 3)当 y0 时, x2+2x+3 0 解得: x1 1,x23 a( 1,0) ,b(3, 0)第 23 页(共 28 页)直线bc 的解析式为y x+3 点d 为 oc 的中点,d(0,)直线 bd 的解析式为y+,设 p(t, t2+2t+3) (0t3) ,则 m(t, t+3) ,n(t,t+) ,h(t, 0)pm t2+2t+3( t+3) t2+3t,mn t+3(x+)t+,nht+mnnh pmmn t2+3tt+解得: t1,t23(舍去)p(,)
41、p 的坐标为(,) ,使得 pmmn nh( 3 )过点 p 作 pfx 轴于 f,交直线bd 于 e ob3,od, bod90bdcos obdpq bd 于点q,pfx 轴于点f pqe bqr pfr90 prf+obd prf+epq90 epq obd,即 cosepq cosobd在 rtpqe 中, cosepqpqpe 第 24 页(共 28 页)在 rtpfr 中, cosrpfprpf spqb2sqrb,spqbbq?pq,sqrbbq?qr pq 2qr 设直线bd 与抛物线交于点g + x2+2x+3,解得: x1 3(即点 b 横坐标),x2点g 横坐标为设 p(t, t2+2t+3) (t3) ,则 e(t,t+)pf|t2+2t+3|,pe|t2+2t+3(t+)| t2+t+| 若t3,则点 p 在直线 bd 上方,如图2,pf t2+2t+3,pe t2+ t+pq 2qr pqpr pe?pf,即 6pe5pf 6( t2+t+) 5( t2+2t+3)解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 励志诗歌合集
- 秘书年终工作总结
- 微软软件购买合同
- 学校供餐服务合同
- 2024年份2月份装修合同石膏板吊顶接缝处防开裂工艺
- 广告拍摄合同范本
- 山东省猪肉入市场厂挂钩合同
- 2025【英文合同】英文租赁合同范本
- 90代土地出让合同标准文本
- 增强财务创新能力的工作安排计划
- 企业劳动关系课件
- 河南省豫西北教研联盟(洛平许济)2024-2025学年高三第二次质量检测数学试题
- T-SDFA 048-2024 混合型饲料添加剂中二硝托胺的测定 液相色谱-串联质谱法
- 车间规则制度培训
- 2024-2025学年上海市八年级语文下学期3月练习试卷附答案解析
- 2025年辽宁医药职业学院单招职业适应性测试题库附答案
- 指向地理综合思维培养的学科融合教学策略研究
- TSJNX 001-2024 低碳近零碳园区评价规范
- 第三单元第三课信息检索的方法教学设计 2024-2025学年西交大版(2024)初中信息技术七年级上册
- 2024山西云时代技术有限公司社会招聘59人笔试参考题库附带答案详解
- 2025年江苏省高职单招《职测》高频必练考试题库400题(含答案)
评论
0/150
提交评论