中考数学数与式复习教案_第1页
中考数学数与式复习教案_第2页
中考数学数与式复习教案_第3页
中考数学数与式复习教案_第4页
中考数学数与式复习教案_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、学习必备欢迎下载第一篇数与式专题一实数一、中考要求 :1在经历数系扩张、探求实数性质及其运算规律的过程;从事借助计算器探索数学规律的活动中,发展同学们的抽象概括能力,并在活动中进一步发展独立思考、合作交流的意识和能力2结合具体情境, 理解估算的意义, 掌握估算的方法,发展数感和估算能力3了解平方根、立方根、实数及其相关概念;会用根号表示并会求数的平方根、立方根;能进行有关实数的简单四则运算4能运用实数的运算解决简单的实际问题,提高应用意识,发展解决问题的能力,从中体会数学的应用价值二、中考热点:本章多考查平方根、立方根、二次根式的有关运算以及实数的有关概念,另外还有一类新情境下的探索性、开放性

2、问题也是本章的热点考题三、考点扫描1、实数的分类:实数0正实数有理数或无理数负实数2、实数和数轴上的点是一一对应的3、相反数:只有符号不同的两个数互为相反数若 a、b 互为相反数, 则 a+b=0,1ab(a、b0)4、绝对值:从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离)0()0(0)0(|aaaaaa5、近似数和有效数字;6、科学记数法;7、整指数幂的运算:mmmmnnmnmnmbaabaaaaa,(a0)负整指数幂的性质:pppaaa11零整指数幂的性质:10a(a0)8、 实数的开方运算:aaaaa22;0)(9、实数的混合运算顺序*10、无理数的错误认识:无限小数就是无理

3、数如1414141 (41 无限循环); (2)带根号的数是无理数如4 ,9; (3)两个无理数的和、差、积、商也还是无理数,如3+ 2 3- 2,都是无理数,但它们的积却是有理数; (4)无理数是无限不循环小数,所以无法在数轴上表示出来,这种说法错误,每一个无理数在数轴上都有一个唯一位置,如2,我们可以用几何作图的方法在数轴上把它找出来,其他的无理数也是如此*11、实数的大小比较:(1).数形结合法(2).作差法比较(3).作商法比较(4).倒数法 : 如6756与(5).平方法四、考点训练1、 (2005、杭州, 3 分)有下列说法:有理数和数轴上的点一对应; 不带根号的数一定是有理数;负

4、数没有立方根;17 是 17 的平方根,其中正确的有()a0 个b1 个c2 个d3 个2、如果2(x-2)=2-x那么 x 取值范围是()a、x 2 b. x 2 c. x 2 d. x2 3、 8 的立方根与16的平方根的和为()a2 b0 c2 或一 4 d0 或 4 4、若 2m4 与 3m 1 是同一个数的平方根,则m 为()a 3 b1 c 3 或 1 d 1 5、若实数 a 和 b 满足b=a+5 +-a-5 ,则 ab 的值等于_ 学习必备欢迎下载6、 在3 2 的相反数是 _, 绝对值是 _. 7、81 的平方根是()a9 b9 c 9 d 3 8、若实数满足 |x|+x=0

5、, 则 x 是()a零或负数b非负数c非零实数d.负数五、例题剖析1、设 a= 3 2 ,b=23 , c=5 1, 则 a、b、c的大小关系是()aabc b、acb ccba dbca 2、若化简 |1x| 2x-8x+162x-5的结果是,则 x的取值范围是()ax 为任意实数b1x4 cx1 dx4 3、阅读下面的文字后,回答问题:小明和小芳解答题目: “先化简下式,再求值:a+21-2a+a其中 a=9时” ,得出了不同的答案,小明的解答:原式= a+21-2a+a = a+(1a)=1 ,小芳的解答: 原式 = a+(a1)=2a1=291=17 _是错误的;错误的解答错在未能正确

6、运用二次根式的性质:_ 4、计算:20012002(2-3)(2+3)5、我国 1990 年的人口出生数为23784659 人。保留三个有效数字的近似值是人。六、综合应用1、 已知 abc 的三边长分别为a、b、c, 且 a、b、c满足 a26a+9+4|5 |0bc,试判断 abc的形状2、数轴上的点并不都表示有理数,如图l22 中数轴上的点p 所表示的数是2 ” , 这种说明问题的方式体现的数学思想方法叫做()a代人法 b换无法 c数形结合d分类讨论3、 (开放题) 如图 l 23 所示的网格纸, 每个小格均为正方形,且小正方形的边长为1,请在小网格纸上画出一个腰长为无理数的等腰三角形4、

7、如图 124 所示,在 abc 中, b=90,点 p从点 b 开始沿 ba 边向点 a 以1 厘米秒的宽度移动;同时,点q 也从点 b 开始沿bc 边向点 c以 2 厘米 /秒的速度移动,问几秒后,pbq 的面积为 36 平方厘米?5、观察表一,寻找规律表二、表三、表四分别是从表一中截取的一部分,其中a、b、c 的值分别为a20、29、30 b18、30、26 c18、20、26 d18、30、28 1 2 3 4 2 4 6 8 3 6 9 12 4 8 12 16 18 c 32 12 15 a 20 24 25 b 表二表三表四学习必备欢迎下载专题二整式一、考点扫描1、代数式的有关概念

8、(1) 代数式是由运算符号把数或表示数的字母连结而成的式子(2) 求代数式的值的方法:化简求值,整体代人2、整式的有关概念(1) 单项式:只含有数与字母的积的代数式叫做单项式(2) 多项式:几个单项式的和,叫做多项式(3) 多项式的降幂排列与升幂排列(4) 同类项:所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷3、整式的运算(1) 整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接整式加减的一般步骤是:(2) 如果遇到括号按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉括

9、号里各项都改变符号(3) 合并同类项:同类项的系数相加, 所得的结果作为系数字母和字母的指数不变4、乘法公式(1).平方差公式 :22bababa(2).完全平方公式 :,2)(222bababa5、因式分解(1).多项式的因式分解,就是把一个多项式化为几个整式的积分解因式要进行到每一个因式都不能再分解为止(2).分解因式的常用方法有: 提公因式法和运用公式法二、考点训练1、a2b312的系数是,是次单项式;2、多项式 3x216x54x3是次项式,其中最高次项是,常数项是,三次项系数是,按 x 的降幂排列;3、如果 3m7xny+7和-4m2-4yn2x是同类项, 则 x= ,y= ;这两个

10、单项式的积是。4、下列运算结果正确的是() 2x3-x2=x x3?(x5)2=x13(-x)6 (-x)3=x3(0.1)-2?10-1=10 (a)(b)(c)(d)5、若 x22(m3)x16 是一个完全平方式,则m的值是()6、代数式 a21,0,13a,x+1y,xy24,m,x+y2, 2 3b中单项式是, 多项式是,分式是。三、例题剖析1、设 2,求222的值。2、若qxxpxx3822的积中不含有2x和3x项,求 p、q 的植。3、从边长为a 的正方形内去掉一个边长为b 的小正方形(如图1) ,然后将剩余部分剪拼成一个矩形(如图 2) ,上述操作所能验证的等式是()a a2-b

11、2= (a+b)(a-b)b. (a-b)2=a2-2ab+b2c.(a+b)2=a2+2ab+b2da2+ab=a(a+b)学习必备欢迎下载四、综合应用1、 将连续的自然数1 至 36按右图的方式排成一个正方形阵列, 用一个小正方形任意圈出其中的9 个数,设圈出的 9 个数的中心的数为a,用含有 a 的代数式表示这 9?个数的和为 _2、用火柴棒按下图中的方式搭图形(1)按图示规律填空:第 n 个图形1 2 3 火柴棒根数( 2) 按照 这种 方式 搭 下去, 搭 第n 个 图形 需 要_根火柴棒3、右边是一个有规律排列的数表,请用含n 的代数式(n?为正整数),表示数表中第n 行第 n 列

12、的数:_学习必备欢迎下载专题三分式一、考点扫描1分式:整式a 除以整式 b,可以表示成ab的形式,如果除式 b 中含有字母,那么称ab为分式注: (1)若 b0,则ab有意义;(2)若 b=0,则ab无意义; (2)若 a=0 且 b0,则ab=0 2分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变3约分:把一个分式的分子和分母的公团式约去,这种变形称为分式的约分4通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分5分式的加减法法则:(1)同分母的分式相加减,分母不变,把分子相加(2)异分母的分式相加减,先通分,化为同分母的分式

13、,然后再按同分母分式的加减法则进行计算6分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘7通分注意事项:(1)通分的关键是确定最简公分母,最简公分母应为各分母系救的最小公倍数与所有相同因式的最高次幂的积;(2)易把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉8分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的9对于化简求值的题型要注意解题格式,要先化简,再代人字母的值求值二、考点训练1、已知分式25,45xxx当 x_时,分式有意义;当 x=_时,分式的值为02

14、、若将分式a+bab(a、b 均为正数)中的字母a、b 的值分别扩大为原来的2 倍,则分式的值为()a扩大为原来的2 倍b缩小为原来的12c不变d缩小为原来的143、分式-3x-2,当 x 时分式值为正;当整数x= 时分式值为整数。4、计算11()xxxx所得正确结果为()11.1 .111abcdxx5、若04322yxyx,则yxyx22= 。6、若112323,2xxyyxyxxyy则分式=_ 三、例题剖析1、求值:222214()aa +2a-1=02442aaaaaaaa,其中 满足2、 (2005、河南, 8 分)有一道题“先化简,再求值:22241244xxxxx(),其中3x。

15、 ”小玲做题时把“3x”错抄成了“3x” ,但她的计算结果也是正确的,请你解释这是怎么回事?学习必备欢迎下载3、已知: p=22xyxyxy,q=(x+y)22y(x-y) ,小敏、小聪每人在x2,y2 的条件下分别计算了p和 q 的值,小敏说p 的值比 q 大,小聪说 c 的值比p 大请你判断谁的结论正确,并说明理由3、已知:2242610,1xxxxx求的值。4、若无论 x 为何实数,分式mxx212总有意义,则 m 的取值范围是。四、综合应用1、已知 abc 的三边为 a,b,c,222abc= abbcac,试判定三角形的形状2、(阅读理解题)阅读下面的解题过程,然后解题:题目:已知x

16、yzabbcca()abc、 、 互相不相等,求 x+y+z+ 的值解: 设xyzabbcca=k, ()xk ab则,(),()x+y+z=yk bczk ca 于是,()00k abbccak,仿照上述方法解答下列问题:已知:(0),yzzxxyxyzxyzxyzxyz求的值。学习必备欢迎下载专题四二次根式一、考点扫描1二次根式的有关概念(1) 二次根式)0(aa叫做二次根式 注意被开方数只能是正数或 o (2) 最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式(3) 同类二次根式化成最简二次根式后,被开方数相同的二次根式,叫做同类二次

17、根式2二次根式的性质);0()(2aaa);0(),0(|2aaaaaa)0; 0(babaab)0;0(bababa3二次根式的运算(1) 二次根式的加减先把各个二次根式化成最简二次根式;再把同类三次根式分别合并(2) 三次根式的乘法(3) 二次根式的除法二、考点训练1、 (20xx 年南通市) 式子xx2有意义的 x 取值范围是_2、 (20xx 年海淀区)下列根式中能与3合并的二次根式为()a、12b、23c、18d、243、(06 烟台市)若51xx, 则xx1=_4、 (20xx 年福州市)下列各式中属于最简二次根式的是()a、53xxb、12xc、12d、5. 05、 (20xx

18、年连云港市)能使等式22xxxx成立的 x 的取值范围是()ax2 bx0 cx2 dx2 6、 (20xx年长沙市)小明的作业本上有以下四题:416a=4a;5105 2aaa;a211aaaa;32aaa(a0) ,做错的题是()a b c d7、对于实数a、b,若2ba=b-a,则()aab bab cab dab 8、当 1x2 时,化简 1x44xx2的结果是()a、 1 b、2x1 c、1 d、32x 三、例题剖析1、(1) 若 0 x0,b0)分别作如下的变形:甲abab=()()()()ababababab; 乙:abab=()()abababab. 这两种变形过程的下列说法中,正确的是()a甲、乙都正确b甲、乙都不正确c

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论