三年级 奥数 精英教师_第1页
三年级 奥数 精英教师_第2页
三年级 奥数 精英教师_第3页
三年级 奥数 精英教师_第4页
三年级 奥数 精英教师_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十一讲 一笔画教学目标在这节课中,老师将引导学生一起来探讨一笔画问题,通过学习一笔画的规律.可以根据奇点的个数来判断哪些图形能一笔画,哪些不能一笔画,并能将不能一笔画的图形改成一笔画图形,最重要的是培养学生利用一笔画知识解决实际问题的能力,同时使学生懂得数学的巨大作用.知识点:1、会判断一个图形能否一笔画成. 2、会将不能一笔画的图形改成一笔画的图形. 3、利用一笔画解决实际问题 想 挑 战 吗 ?右图是一个迷阵,箭头指出迷阵的入口和出口,请你从入口进迷阵,然后从出口走出来. 分析:要找到正确的道路,切不可急躁.耐心观察,有次序地试探,这样,正确的道路一定能找到.其画法如图:专题精讲 什么样

2、的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.判断图形能否一笔画的规律:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4)奇点个数超过两个的图形,一定不能一笔画(一) 一笔画以及多笔画【例1】 观察下面的图形,说明哪些图可以一笔画完

3、,哪些不能,为什么?对于可以一笔画的图形,指明画法. 分析:(a)图:可以一笔画,因为只有两个奇点a、b;画法为a头部翅膀尾部翅膀嘴. (b)图:不能一笔画,因为此图不是连通图. (c)图:不能一笔画,因图中有四个奇点:a、b、c、d. (d)图:可以一笔画,因为只有两个奇点;画法为:acdabefghijkb. (e)图:可以一笔画,因为没有奇点;画法可以是:abcdefghijbdfhja. (f)图:不能一笔画出,因为图中有八个奇点.注意在上面能够一笔画出的图中,画法并不是惟一的.事实上,对于有两个奇点的图来说,任一个奇点都可以作为起点,以另一个奇点作为终点;对于没有奇点的图来说,任一个

4、偶点都可以作为起点,最后仍以这点作为终点.巩固判断下列图a、图b、图c能否一笔画 分析:图a是一个连通的图形,图中只有点a和点f两个奇点,所以它能一笔画,其中一种画法如下:amnafbcbkcdedlef 图b是一个不连通的图形,所以不能一笔画图c是连通图,图中所有点都是偶点,所以能一笔画其中一种画法如下:abcdefdafca【例2】 右图是某地区所有街道的平面图.甲、乙二人同时分别从a、b出发,以相同的速度走遍所有的街道,最后到达c.如果允许两人在遵守规则的条件下可以选择最短路径的话,问两人谁能最先到达c?分析:本题要求二人都必须走遍所有的街道最后到达c,而且两人的速度相同.因此,谁走的路

5、程少,谁便可以先到达c.容易知道,在题目的要求下,每个人所走路程都至少是所有街道路程的总和.仔细观察上图,可以发现图中有两个奇点:a和c.这就是说,此图可以以a、c两点分别作为起点和终点而一笔画成.也就是说,甲可以从a出发,不重复地走遍所有的街道,最后到达c;而从b出发的乙则不行.因此,甲所走的路程正好等于所有街道路程的总和,而乙所走的路程则必定大于这个总和,这样甲先到达c.巩固在六面体的顶点b和e处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点d.已知它们的爬速相同,哪只蚂蚁能获胜?分析:许多同学看不出这是一笔画问题,但利用一笔画的知识,能非常巧妙地解答这道题.这道题只要

6、求爬过所有的棱,没要求不能重复.可是两只蚂蚁爬速相同,如果一只不重复地爬遍所有的棱,而另一只必须重复爬某些棱,那么前一只蚂蚁爬的路程短,自然先到达d点,因而获胜.问题变为从b到d与从e到d哪个是一笔画问题.图中只有e,d两个奇点,所以从e到d可以一笔画出,而从b到d却不能,因此e点的蚂蚁获胜. 数学小游戏 用一笔画成四条线段把所有的点连起来,怎样画?分析: 通过试画,似乎不可以画,但通过仔细观察,对照一笔画的规律,便可发现,若添上两个辅助点,就可画成如右图: 我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n为自然数

7、),那么这个图一定可以用n笔画成.公式如下:奇点数÷2=笔画数,即2n÷2=n.【例3】 判断下列图形能否一笔画若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形 分析:图a:原图有四个奇点,所以不能一笔画,在b,d两点之间加一条线后,图中只有两个奇点,故可以一笔画出,如图d所示画法:habcdefidbihgf图b:原图有四个奇点,所以不能用一笔画去掉k,l两点之间的连线,图中只有两个奇点,故可以一笔画出,如图e所示画法:bcdefjhgiabkile图c:原图有四个奇点,所以不能用一笔画在b,c两点之间加一条线后,图中只有两个奇点,故可以一笔画出

8、,如图f所示画法:aedhabfcgbcd 注意:a、b、c三个图都是连通的图形,但由于每个图的奇点个数均超过两个,所以都不能一笔画 前铺观察下面的图,看各至少用几笔画成?分析:(1)图中有8个奇点,因此需用4笔画成. (2)图中有12个奇点,需6笔画成. (3)图是无奇点的连通图,可一笔画成.【例4】 将下图改为一笔画.分析:图(1)中有6个奇点,因此可添上两条(或3条)边后可改为一笔画;又因为这个图中,把这6个奇点任意分为3对后,最多只有两对奇点间有边相连,因此,可去掉两条边后改为一笔画,举例如图(3)(6).图(2)中有4个奇点,因此,可添上2条(或1条)边后改为一笔画;又因为把奇点按a

9、与b,c与d(或a与d,b与c)分为两对后,每对间均有边相连,因此,可去掉两条(或1条)边后改为一笔画.举例如图(7)(8).说明:图(6)运用了两种方法,去掉边bc,添上边ad与ef.(二)一笔画的实际应用【例5】 18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛a和一座半岛d,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a)如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?:这个有趣的问题引起了著名数学家欧拉的注意,他证明了七桥问题中提到的走法根本不存在下面,我们考虑如

10、下两个问题:(1)如果再架一座桥,游人能否走遍所有这八座桥?若能,这座桥应架在何处?若不能,请说明理由(2)架设几座桥可以使游人走遍所有的桥回到出发地?分析:(1)图a中,用a,d表示两个小岛,点b,c表示河的左右两岸,若再用连接两点的线表示桥,从而得到一个由四个点和七条线组成的图形(如图b)在图b中,点a,b,c,d四个点均为奇点,显然不能一笔画出这个图形若将其中的两个奇点改成偶点,即在某两个奇点之间连一条线,这样奇点个数由四个变为两个,此时,图形可以一笔画出如我们可以选择奇点b,d,在b,d之间连一条线(架一座桥),如图c在图c中只有点a和c两个奇点,那么我们可以以a为起点,c为终点将图形

11、一笔画出其中一种画法为:acabadbdc所以,如果在河岸b与小岛d之间架一座桥,游人就可以不重复地走遍所有的桥(2)在(1)的基础上,再在另外两个奇点a与c之间连一条线(即架一座桥),使这两个奇点也变成偶点,如图d那么a,b,c,d四个点均为偶点,所以图d可以一笔画出,并且可以以任意点为起点,最后仍回到这个点其中一种画法为:acacdabdba 这表明:在河岸b与小岛d之间架一座桥后,再在小岛a与河岸c之间架一座桥,共架设两座桥,就可以使游人不重复地走遍所有的桥并回到出发地巩固如图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?分析:用

12、点表示小岛与河岸,用连接两点的线表示连接相应两地的桥,如图,有2个奇点,所以该图可以一笔画,即可以一次不重复地走遍这七座桥.例如右下图的走法.【例6】 有一个邮局,负责21个村庄的投递工作,右图中的点表示村庄,线段表示道路.邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?分析:图中有两个奇点,所以该图可以一笔画,但因为邮局所在点为奇点,所以要一笔画就不可能回到邮局.又图中a,b,c,d,e,f,g,h,i,j十点均有4条线段与之相连,如果我们将上图一笔画的话,就要经过以上十点各两次,这也不满足题目的要求,所以要将这些点相连的线段去掉一些,使得与这些点相连的线段均只有两条,并且将

13、两个奇点也变成只有两条线段与之相连,这样得到的图形即可一笔画,又只经过每个点一次,并且可以回到邮局,一种可行路线如下: 【例7】 右图是某博物馆的平面图,相邻两个展厅之间有一扇门相通,每一个展厅都有一门通往馆外问参观者能否不重复地一次穿过每一扇门?若能,请找出一条可行路径;若不能,请说明理由如果允许关闭某一扇门,问参观者能否不重复地穿过每一扇开着的门?分析:我们把展厅a,b,c,d,e及馆外f看成某个图中的点,把两个展厅之间的门看作是连接表示这两个展厅的点的线根据题中条件知,馆外f与a,b,c,d,e各展厅相通,这样将点f与点a,b,c,d,e用线连接;展厅a与展厅b,c,d相通,将点a与点b

14、,c,d用线连接;展厅b除与a相通外,它还与d,e展厅相通,将b与d,e连接;除此之外,展厅c,d相通,展厅d,e相通,将点c,d连接,再将点d,e连接(如图a)于是本题要解决的问题就变成了能否将图a一笔画的问题可以看出:图a中共有六个点,其中有四个奇点,它们分别为c,d,e,f,由一笔画的规律可知,图a不能一笔画也就是说,参观者不能够不重复地一次穿过每一扇门如果允许关闭某一扇门,这相当于在图a中去掉一条线,那么参观者就有可能不重复地一次穿过每一扇门我们知道,在图a中有四个奇点c,d,e,f为了把图a改成一笔画图形,我们设法减少奇点个数,使奇点数变为两个为此,我们可以去掉一条连接两个奇点的线,

15、如去掉e与f间的连线,相应的图a就变成了图b在图b中,除了原来的c和d是奇点外,其余点全部是偶点,故图b可以一笔画其中一种画法为:cfdebfabdacd 上面的分析表明,如果关闭连接e、f两展厅之间的门,参观者就可以不重复地一次穿过每一扇开着的门 本题与七桥问题类似,只是将行人过桥换成了参观者穿过每一扇门我们将这个问题转化为一笔画问题来研究前铺右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?分析:我们将每个展室看成一个点,室外看成点e,将每扇门看成一条线段,两个展室间有门相通表示两个点间有线段相连,于是得到下图.能否不重复地穿过每扇门的

16、问题,变为下图是否一笔画问题.图中只有a,d两个奇点,是一笔画,所以答案是肯定的,应该从a或d展室开始走.【例8】 已知长方体木块的长是80厘米,宽40厘米,高80厘米(如右图),并且要求蜘蛛在爬行过程中只能前进,不能后退,同一条棱不能爬两次请问这只蜘蛛最多要爬行多少厘米?分析:图中八个顶点均为奇点,所以不能一笔画,要使其能一笔画,至少要去掉三条棱,使上图只有两个奇点,就可以满足一笔画的条件长方体的棱长总和一定,(80+80+40)×4=800(厘米),因此去掉的三条棱越短,蜘蛛爬过的距离就越远所以我们去掉三条棱长为40厘米的棱,于是可知,蜘蛛爬行的最远距离为:800-40×

17、;3=680(厘米)蜘蛛的爬行路径为:gfcdghabeh(如右图)注意这是一个立体图形,它有八个顶点,我们把长方体的棱看作顶点与顶点之间的连线,蜘蛛只能前进不能后退,并且每一条棱不能爬两次,这实质上是一个一笔画问题【例9】 右图是某小区的街道分布图,街道长度如图所示(单位:公里),图中各点表示不同楼的代号一辆垃圾清扫车从垃圾站(垃圾站位于c楼与d楼之间的p处)出发要清扫完所有街道后仍回到垃圾站,问怎样走路线最短,最短路线是多少公里?分析:为了少走冤枉路和节省时间,题目中要求最短路线,根据一笔画原理,我们知道一笔画路线就是最短路线本题要求清扫车从p点出发,仍回到p点通过观察上图可知,图中有六个

18、奇点,根据一笔画规律可知,清扫车想清扫完所有街道而又不走重复的路是不可能的要使清扫车从p点出发,最后仍回到p点,就必须把图中所有的奇点都变成偶点,即在两奇点之间添加一条线在实际问题中,就是清扫车在哪些街道上重复走的问题,由于每条街道的长度不同,因此需要我们考虑清扫车重复走哪条街道才使总路线最短为使六个奇点都变成偶点,我们可以有下图中的四种方法表示清扫车所走的重复路线,其中填虚线的地方表示的是重复路线重复的路程分别为: 图a:2×2+3=7;图b:3+4×2=11;图c:3×3=9; 图d:3+6×2=15显然,重复走的路线最短,总路程就最短从上述计算中就

19、可找到最短路线图,即下面四个图中的图a在图a中,所有点均为偶点,是一笔画图形清扫车可按如下路径走:pdgdefghlhcblmabcp,全程为:(1+2+4+2)×2+3×5+2×2+3=40(公里)【例10】 邮递员李文投送邮件的街道以及街道的长度如右图所示(单位:千米),每天小李要从邮局出发,走遍所有街道后回到邮局请你帮他设计一条最短路线,并计算出这条路线有多少千米?分析:本题仍可以用一笔画图形的方法来解决在图a中共有六个奇点e,f,g,h,i,j,把这些奇点配对,每对之间用虚线连接(如图a),其中要用到d点,这样图中就没有奇点了,从而可以不重复地走遍所有的街

20、道由于邮递员李文要重复走一些路段,因此重复走的路越短越好,即添上去的重复线段的总长度越短越好在图a中h与e之间有重叠,这样势必会增加李文所走路程的长度,应作调整经调整后,将重叠部分去掉便得图b在图b的圈形闭路ihgji中,i,j,g,h各点没有连线时是奇点,连线后变成偶点,增加长度为50×2=100千米而如果连ij和hg,增加的长度仅为10×2=20,由此可知图b需继续作调整,改成图c,这种连接方法是最好的,它使李文行走的路线最短根据以上分析,为了保证添上去的线段之和最短,应遵循下面的两条原则:(1)连线不能有重叠的线段;(2)在每一个圈形闭路上,连线长度之和不能超过这个闭

21、路总圈长的一半经过分析可以知道,图c的连接方法能使邮递员李文行走路线最短,而且能保证李文从邮局出发又回到邮局这时他的行走路线为:邮局aijihghedfdgjbcde邮局他行走的全程为: (50+15)×4+20×4+10×6+20×2=440(千米) 小结本题中采用的方法叫做“奇偶点图上作业法”,用这种方法来确定最短路线比较简便实用此方法可以用下面的口诀来描述:画出路线图,确定奇偶点;奇点对对连,连线不重叠;闭路添连线.不得过半圈巩固右图是某地区街道的平面图,图上的数字表示那条街道的长度.清晨,洒水车从a出发,要洒遍所有的街道,最后再回到a.问:如何设计洒水路线最合理?分析:这又是一个最短路线的问题.通过分析可以知道:在洒水路线中,k是中间点,因此必须成为偶点,这样洒水车必须重复走kc这条边(如下左图).至此,奇点的个数并未减少,仍是6个.容易得出,洒水车必须重复走的路线有:gf、ij、bc.即洒水路线如下右图.全程453+6=54(里).专题展望本讲一笔画问题是小学中最后一次学习了,通过学习本讲,同学们应该可以发现一笔画问题在实际生活中有很大的应用希望同学们认真学习,再接再厉!练习十一1. (例1)判断下列各图能否一笔画 分析:图a中九个点全是偶点,因此可以一笔

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论