![A summary of thermodynamic processes:热力学过程的总结_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-12/1/9e98a8a3-7484-4c1c-abc2-88d3f4b62163/9e98a8a3-7484-4c1c-abc2-88d3f4b621631.gif)
![A summary of thermodynamic processes:热力学过程的总结_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-12/1/9e98a8a3-7484-4c1c-abc2-88d3f4b62163/9e98a8a3-7484-4c1c-abc2-88d3f4b621632.gif)
![A summary of thermodynamic processes:热力学过程的总结_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-12/1/9e98a8a3-7484-4c1c-abc2-88d3f4b62163/9e98a8a3-7484-4c1c-abc2-88d3f4b621633.gif)
![A summary of thermodynamic processes:热力学过程的总结_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-12/1/9e98a8a3-7484-4c1c-abc2-88d3f4b62163/9e98a8a3-7484-4c1c-abc2-88d3f4b621634.gif)
![A summary of thermodynamic processes:热力学过程的总结_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-12/1/9e98a8a3-7484-4c1c-abc2-88d3f4b62163/9e98a8a3-7484-4c1c-abc2-88d3f4b621635.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.Thermodynamic ProcessesCalorimetryChange of phase?Type of heatEquationTemperatureCalculationChange?Nospecific heatdQ = mCdT 1YesYeslatent heatdQ = mL No1 Caution! Be careful of molar versus mass based specific heat constants.Ideal Gas LawPV = nRT,P => pressure in Pascals (N/m2)V => volume in
2、m3n => number of moles (dimensionless)R => gas constantT => temperature in Kelvin (not Celsius!)Other Key EquationsdU = dQ dW(first law of thermodynamics)dQ = nCVDT(ideal gas, specific heat at constant volume)dQ = nCPDT(ideal gas, specific heat at constant pressure)dU = nCVDT(ideal gas, der
3、ivation attached)CP CV = R(statistical mechanics)Internal Energy of an Ideal GasThe internal energy depends only on the endpoints. Pick a constant volume and constant pressure line segments to connect the endpoints. Using the first law:DU = nCV(T T0) + nCP(Tf T) 0 Pf(Vf-V0) = nCV(Tf T0), sincePfV0 =
4、 nRTLaws of Thermodynamics for Ideal Gasesprocessmeaningwork (DW)heat (DQ)entropy (DS)isobaricconstant pressureP0(VF V0)nCP(TF T0)nCP ln(TF/T0)isochoricconstant volume0nCV(TF T0)nCV ln(TF/T0)isothermalconstant temperature(nRT0)ln(VF/V0)1(nR)ln(VF/V0)adiabatic 2no heat exchange(PFVF- P0V0) /(1 - g) 0
5、031From the first law of thermodynamics, dU = dQ dW; dU=0 for an isothermal process, so dQ = dW, or DQ = DW2From the first law of thermodynamics, dU = dQ dW; dQ=0 for an adiabatic process, so dU = -dW =>nCVdT = -PdV;from the ideal gas law, dT = d(PV/nR), son(CV/nR) d(PV) = -PdVn(CV/nR) PdV + VdP
6、= -PdV,VdP = -PdV 1 + (CV/R) / (CV/R);since R = CP - CV, gº CP / CVVdP = -gPdV , orP/P0 = (V/V0)-g,orPVg = P0V0g.3dW = PdV, so DW = ò (P0V0g) V-gdV = (P0V0g) V1-g/(1 - g), V Î V0,VFDW = (P0V0g) V1-g/(1 - g) = (PFVF- P0V0) /(1 - g)Examples follow(1) a simple example(2) Carnot cycle(3)
7、Otto cycle(4) Diesel cycle(5) Stirling cycleExample 1: A Simple ExamplePV4P0P03V0V01243Heat calculations:Work calculations:DQ12 = 8(CP/R)P0V0DW12 = 8P0V0DQ23 = -9(CV/R)P0V0DW23 = DW41 = 0DQ34 = -2(CP/R)P0V0DW34 = -2P0V0DQ41 = 3(CV/R)P0V0Entropy calculations:Sums:DS12 = nCPln(3)DQ = DW = 6P0V0DS23 =
8、-nCVln(4)DU = DQ - DW = 0 (expected, closed cycle)DS34 = -nCPln(3)DS = 0 (reversible process)DS41 = nCVln(4)efficiency:QH = DQ12 + DQ41 = (8CP + 3CV)P0V0/R(sum of positive heat results)QC = |DQ23 + DQ34| = (2CP + 9CV)P0V0/R(sum of negative heat results)e = 1 - (2CP + 9CV)/ (8CP + 3CV) = 1 - (2g + 9)
9、/ (8g + 3);for a monatomic gas, g = 5/3 and e = 0.24Carnot efficiency:TC = T4 = P0V0/(nR)TH = T2 = 12P0V0/(nR)e = 1 - TC/TH = 0.92 (notice that the actual efficiency is much lower)Example 2: Carnot CycleSTATETaTHbTHcTCdTC_STEPTYPEDQDWDUDSa->bisothermalnRTHln(Vb/Va)DQ0nRln(Vb/Va)b->cadiabatic0D
10、UnCV(TC - TH)0c->disothermalnRTCln(Vd/Vc) DQ0nRln(Vd/Vc)d->aadiabatic0DUnCV (TH - TC)0_efficiency:DQab = nRTHln(Vb/Va) > 0DQcd = -nRTCln(Vd/Vc) < 0|QC| / | QH | = (TC/TH) | ln(Vd/Vc)/ ln(Vb/Va) |TbVbg-1 = TcVcg-1 | (adiabatic)=> Vb/Va = Vc/Vd => |QC| / | QH | = (TC/TH)TdVdg-1 = TaV
11、ag-1|e = 1 - (TC/TH)entropy:DS = 0, see efficiency calculation. Reversible process.Example 3: Otto CycleSTATEPVTaPaVa = rVbTabPb = Pa rgVbTb = Ta rg-1cPc = Pb(Tc/Tb)VbTc = Td rg-1dPd = Pc(1/r)gVa = rVbTd_STEPTYPEDQDWDUDSa->badiabatic0nCV(Tb Ta)-DW0b->cisochoricnCV(Tc Tb)0DQnCVln(Tc/Tb)c->da
12、diabatic0nCV(Td Tc)-DW0d->aisochoric nCV(Ta Td)0DQnCVln(Ta/Td)_efficiency:DQbc = nCV(Tc Tb) > 0DQcd = nCV(Ta Td) < 0 |QC| / | QH | = (Td Ta) / (Tc Tb) = (Td Ta)/ rg-1(Td Ta)= 1/ rg-1, or e = 1 - 1/ rg-1NOTE:Tc > Tb > Ta (since Pc>Pb);Td/Ta = Tc/Tb > 1 => Td > Ta;so that Tc
13、 = TH and Ta = TCOLD; using these temperatures, the Carnot efficiency is e = 1 (1/ rg-1)( Ta/Td) > Otto efficiencyentropy:DS = nCVln(Tc/Tb) + nCVln(Ta/Td) = nCVln(Tc/Tb)(Ta/Td)= nCVln(Td/Ta)(Ta/Td)= nCVln (1) = 0DS = 0. Reversible process.Example 4: Diesel CycleSTATEPVTaPaVa = rVbTabPb = Pa rgVbT
14、b = Ta rg-1cPbVc= rcVbTc = (Vc/Vb)Tb = (Vc/Vb)Ta rg-1dPd = Pa (Vc/Vb)gVa = rVbTd = (Vc/Vb)g (1/r)g-1Tb = (Vc/Vb)g Ta_STEPTYPEDQDWDUDSa->badiabatic0nCV(Tb Ta)-DW0b->cisobaricnCP(Tc Tb)0DQnCPln(Tc/Tb) c->dadiabatic0nCV(Td Tc)-DW0d->aisochoric nCV(Ta Td)0DQnCVln(Ta/Td)_efficiency:DQbc = nCP
15、(Tc Tb) > 0DQcd = nCV(Ta Td) < 0 |QC| / | QH | = (1/ g) (Td Ta) / (Tc Tb) = (1/ g) (Vc/Vb)g 1)Ta / (Vc/Vb) 1Tb= (1/ g) (Vc/Vb)g 1)Ta / (Vc/Vb) 1Tb= (1/ g) (Vc/Vb)g 1) / (Vc/Vb) 1(1/rg-1)e = 1 rcg 1 / rc 1 (1/ g rg-1)NOTE: this is indeterminate for rc = 1; the efficiency at this point is 1 (g-1
16、)/ (g rg-1) => 1 2/ (5 r2/3) for monatomicNOTE: for rc >> 1, e -> 1 (1/ g)(rc/r) g-1 => 1 3(r/rc)-2/3 for monatomicentropy:DS = nCPln(Tc/Tb) + nCVln(Ta/Td)= nCV gln(Tc/Tb) + ln(Ta/Td)= nCV ln(Tc/Tb)g(Ta/Td)= nCV ln(Vc/Vb)g (Vb/Vc)g= nCV ln(1) = 0DS = 0. Reversible process.Example 5: S
17、tirling CycleSTATEPVTaPaVa = rVbTCbPbVbTCcPcVbTHdPdVa = rVbTH_STEPTYPEDQDWDUDSa->bisothermalDW-nRTC ln(r)0nRln(Vb/Va)b->cisochoricnCV(TH TC)0DQnCVln(Tc/Tb) c->disothermalDWnRTH ln(r)0nRln(Vd/Vc)d->aisochoric -nCV(TH TC)0DQnCVln(Ta/Td)_efficiency:DQcd = nRTH ln(r) + nCV(TH TC) > 0DQab = -nRTC ln(r) - nCV(TH TC) < 0 |QC| / | QH | = TH ln(r) + (CV/R)(TH TC) / TC ln(r) + (CV/R)(TH TC)=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湘师大版道德与法治九年级下册3.1《多民族的大家庭》听课评课记录
- 教科版道德与法治八年级上册6.2《公民的责任》听课评课记录
- 鲁教版数学六年级上册2.1《0科学计数法》听评课记录
- 岳麓版历史七年级上册第18课《汉代的科技与文化》听课评课记录
- 苏科版数学九年级下册5.1《二次函数》讲听评课记录
- 五年级数学听评课记录表
- 人教版九年级数学上册第二十二章二次函数《22.2二次函数与一元二次方程》第1课时听评课记录
- 【2022年新课标】部编版七年级上册道德与法治第六课 交友的智慧 2课时听课评课记录
- 韩式餐厅承包经营合同范本
- 个人入股分红协议书范本
- 中国服装零售行业发展环境、市场运行格局及前景研究报告-智研咨询(2025版)
- 临床提高脓毒性休克患者1h集束化措施落实率PDCA品管圈
- 春节节后施工复工安全培训
- GB/T 3478.1-1995圆柱直齿渐开线花键模数基本齿廓公差
- GB/T 1346-2001水泥标准稠度用水量、凝结时间、安定性检验方法
- FZ/T 25001-2012工业用毛毡
- 瑞幸咖啡SWOT分析
- DL∕T 1867-2018 电力需求响应信息交换规范
- 小学生品德发展水平指标评价体系(小学)
- 水利工程地震应急预案
- 日历表空白每月打印计划表
评论
0/150
提交评论