版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3. 2回归分析A基础达标1. 废品率x%和每吨生铁成本y(元)之间的回归直线方程为 y= 256 + 3x,表明()A 废品率每增加1%,生铁成本增加259元B废品率每增加1%,生铁成本增加3元C.废品率每增加1%,生铁成本平均每吨增加 3元D .废品率不变,生铁成本为256元解析:选C.回归方程的系数b表示x每增加一个单位,y平均增加b,当x为1时,废品率应为1%,故当废品率增加1%时,生铁成本平均每吨增加3元.2已知某产品连续4个月的广告费用为xi(i = 1, 2, 3, 4)千元,销售额为yi(i = 1, 2,3, 4)万元,经过对这些数据的处理,得到如下数据信息:X1 + X2+
2、 X3+ X4= 18, y1 + y2 + y+ y4= 14 ;广告费用x和销售额y之间具有较强的线性相关关系;回归直线方程y= bx+a中,b=o.8(用最小二乘法求得),那么当广告费用为6千元时,可预测销售额约为()A . 3.5 万元B . 4.7 万元C. 4.9 万元D . 6.5 万元解析:选B.依题意得x = 4.5, y = 3.5,由回归直线必过样本点中心得a = 3.5 0.8X 4.5=-0.1,所以回归直线方程为 y = 0.8x 0.1.当 x= 6 时,y = 0.8X 6 0.1 = 4.7.3某化工厂为预测某产品的回收率y,需要研究它和原料有效成分含量之间的
3、相关关系,现取了 8对观测值,计算得 Zxy =| K49,则y与X的线性回归方程是()A. y= 11.47+ 2.62xB. y= 11.47+ 2.62xC. y= 2.62+ 11.47XD. y= 11.47 2.62x解析:选A.由题中数据得=6.5, = 28.5,1 849 8 X 6.5 X 28.5367478 8X 6.52= 1402.62,a= b = 28.5 2.62 X 6.5= 11.47,所以y与x的线性回归方程是y= 2.62x+ 11.47.故选A.4. 若某地财政收入 x与支出y满足线性回归方程y= bx+ a + s(单位:亿元),其中b =0.8,
4、 a= 2, | £0.5.如果今年该地区财政收入10亿元,则年支出预计不会超过()B. 9亿元D. 9.5亿元A. 10亿元C. 10.5亿元解析:选C.代入数据y= 10+ £,因为|杆0.5,所以9.5W yw 10.5,故不会超过10.5亿元.5某种产品的广告费支出 x与销售额y(单位:万元)之间的关系如下表:x24568y3040605070y与x的线性回归方程为y = 6.5x+ 17.5,当广告支出5万元时,随机误差的效应(残差)解析:因为y与x的线性回归方程为y= 6.5x+ 17.5,当x= 5时,y = 50,当广告支出5 万元时,由表格得:y= 60,
5、故随机误差的效应(残差)为60 50= 10.答案:106.一唱片公司研究预支出费用 x(十万元)与唱片销售量y(千张)之间的关系,从其所发 行的唱片中随机抽选了 10 千张,得到如下的资料: 趴一躺?弭.则y与x的相关系数r的绝对值为I - L 11-1 "1-1 'i - I. ri - 1 1-1解析:根据公式得相关系数mlx > -101237 10X 2.8X 7.5= '=0.3,(303.4 10X 2.82)( 598.5 10X 7.52)所以 |r|= 0.3.答案:0.37.某个服装店经营某种服装,在某周内获纯利y(元)与该周每天销售这种服
6、装件数 x之间的一组数据关系见表:x3456789<y6669738189909177已知睪 lx2= 280,為Xiyi = 3 487.(1) 求 x , y ;已知纯利y与每天销售件数x线性相关,试求出其回归方程.”-3+ 4 + 5 + 6+ 7 + 8 + 9解:(1)x = 6,66 + 69 + 73 + 81 + 89 + 90 + 915597=因为y与x有线性相关关系,二 559人 iyi 7 x y 3 487 7 X 6 X 7所以 b= "7x = 4.75,X x2 一 7 x 2280 7 X 36i =1a 559719a= 6 X 4.75=
7、P1.36.714故回归方程为y= 4.75 x + 51.36.&已知某校5个学生的数学和物理成绩如下表:学生的编号i12345数学Xi8075706560物理yi7066686462(1)假设在对这5名学生成绩进行统计时,把这5名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有 2名学生的物理成绩是自己的实际分数的概率是多少?参考数据和公式:A A AAy= bx+ a,其中 b=通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系, 在上述表格是正确的前提下, 用x表示数学成绩,用y表示物理成绩,求y与x的回归方程.解:(1)记事件A为“恰有2名学生的物理成
8、绩是自己的实际成绩则 P(A)55A1- 6一80+ 75 + 70+ 65 + 60(2)因为 x = 70,70 + 66 + 68 + 64 + 62y = 66,>' -HI) =0 36.iT 1u =66 -U. 36 x 7(J =4C. M,所玖呵阳盘離才程功;-0. 36a +J0. 8.B能力提升1 假设关于某设备的使用年限x和所支出的维修费用 y(万元)有如表的统计资料:使用年限x23456维修费用y2.23.85.56.57.0若由资料可知y对x呈线性相关关系:求线性回归方程y= bx + a;估计使用年限为10年时,维修费用是多少?90 5X 42=1.
9、23 ,解:(1)列表如下:12345总计xi2345620yi2.23.85.56.57.025xiyi4.411.422.032.542.0112.3x24916253690x = 4 , y - 5 ;L? =90; y. =112. 31 c-l *i-l112.3 5x 4 x 5于是 a= b = 5 1.23 x 4= 0.08.所以线性回归方程为y= 1.23x+ 0.08.当x= 10时,y= 1.23 x 10+ 0.08= 12.38,即估计使用10年时,维修费用是12.38万元.2. (选做题)某地区不同身高的未成年男性的体重平均值如表所示:身高 x(cm)607080
10、90100110体重y(kg)6.137.909.9912.1515.0217.50身高x(cm)120130140150160170体重y(kg)20.9226.8631.1138.8547.2555.05(1) 试建立y与x之间的回归方程;(2) 如果体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高175 cm、体重82 kg的在校男生体重是否正常?解:(1)根据题表中的数据画出散点图如图所示.由图可看出,样本点分布在某条指数函数曲线y= C1eC2X的周围,于是令z= In y,得下表:x60708090100110z1.812.072.302.502.712.86x120130140150160170z3.043.293.443.663.864.01作出散点图如图所示:z4321*Q2D 41)的 HO II
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国伏格列波糖数据监测研究报告
- 2025-2030年(全新版)中国纤维食品市场未来发展趋势及前景调研分析报告
- 2025-2030年中国顺酐市场运行动态分析与营销策略研究报告
- 2025-2030年中国防水建材市场运行现状及发展前景预测报告
- 2025-2030年中国轮毂电机驱动电动汽车行业未来发展趋势及前景调研分析报告
- 塑料在通讯设备材料的应用考核试卷
- 园林金属工具企业文化建设考核试卷
- 传动轴的扭转振动分析与控制考核试卷
- 2025年度文化创意产业园区运营劳务合同
- 供应链案例分析模板考核试卷
- 幼儿园大班数学练习题100道及答案解析
- 对讲机外壳注射模设计 模具设计及制作专业
- 2024年四川省德阳市中考道德与法治试卷(含答案逐题解析)
- 施工现场水电费协议
- SH/T 3046-2024 石油化工立式圆筒形钢制焊接储罐设计规范(正式版)
- 六年级数学质量分析及改进措施
- 一年级下册数学口算题卡打印
- 真人cs基于信号发射的激光武器设计
- 【阅读提升】部编版语文五年级下册第三单元阅读要素解析 类文阅读课外阅读过关(含答案)
- 四年级上册递等式计算练习200题及答案
- 法院后勤部门述职报告
评论
0/150
提交评论