圆与方程基础练习题_第1页
圆与方程基础练习题_第2页
圆与方程基础练习题_第3页
圆与方程基础练习题_第4页
圆与方程基础练习题_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、直线与圆的方程练习题1圆的方程是(x 1)(x+2)+(y2)(y+4)=0 ,则圆心的坐标是( )a、(1, 1) b、(21, 1) c、( 1,2) d、( 21, 1)2过点 a(1, 1) 与 b(1,1) 且圆心在直线x+y2=0 上的圆的方程为()a(x 3)2+(y+1)2=4 b(x 1)2+(y 1)2=4 c(x+3)2+(y 1)2=4 d(x+1)2+(y+1)2=43方程22()0 xayb表示的图形是()a、以 (a,b) 为圆心的圆 b 、点 (a,b) c、( a, b) 为圆心的圆 d 、点 ( a, b)4两圆 x2+y24x+6y=0 和 x2+y26x

2、=0 的连心线方程为()ax+y+3=0 b2xy5=0 c 3xy 9=0 d4x3y+7=05方程052422mymxyx表示圆的充要条件是()a141mb141mm或c41md1m6圆 x2y2x y320 的半径是 ( )a 1 b 2 c 2 d 227圆 o1:x2y22x0 与圆 o2: x2 y2 4y0 的位置关系是( )a 外离 b相交 c外切 d内切8圆 x22xy24y30 上到直线x y10 的距离为2的点共有 ( )a 4 b 3 c 2 d 1 9设直线过点(a,0) ,其斜率为1,且与圆x2y22 相切,则a 的值为 ( )a2 b2c 22 d410当 a 为

3、任意实数时,直线(a 1)x ya10 恒过定点c,则以 c为圆心,5为半径的圆的方程为( )a x2 y2 2x4y0 b x2y22x4y0 c x2y22x4y0 dx2y22x4y011设 p是圆 (x 3)2(y 1)24 上的动点, q是直线 x 3 上的动点,则 |pq| 的最小值为 ( )a 6 b 4 c 3 d212已知三点a(1,0) ,b(0,3) ,c(2,3) ,则 abc外接圆的圆心到原点的距离为( )a53 b213c253 d4313. 过点 (3,1) 作圆 (x 1)2 y2 1 的两条切线,切点分别为a,b,则直线ab的方程为 ( )a 2xy30 b

4、2x y30 c 4xy30 d4xy3014圆22220 xyxy的周长是() a2 2 b2c2d415若直线ax+by+c=0 在第一、二、四象限,则有()a、ac0,bc0 b、ac0,bc0 c、 ac0 d、ac0,bc016点 (1,2aa) 在圆 x2+y22y4=0 的内部,则a的取值范围是()a 1a1 b 0a1 c 1a51d51a117点 p(5a+1,12a)在圆( x1)2+y2=1 的内部,则a 的取值范围是()a.a 1 131 c.a51 d.a13118求经过点a ( 1,4) 、 b(3,2)且圆心在y 轴上的圆的方程19已知一圆经过点a(2, 3)和

5、b( 2, 5) ,且圆心c在直线 l :230 xy上,求此圆的标准方程20已知圆c:252122yx及直线47112:mymxml.rm(1)证明 : 不论m取什么实数,直线l与圆 c恒相交;(2)求直线l与圆 c所截得的弦长的最短长度及此时直线l的方程21如果实数x、y 满足 x2+y2-4x+1=0 ,求yx的最大值与最小值。22abc的三个顶点分别为a( 1,5) ,( 2, 2),(5,5),求其外接圆方程参考答案1 d【 解 析 】 方 程(1)(2)(2)(4)0 xxyy化 为222100 xxyy; 则 圆的 标 准 方 程 是22145()(1).24xy所 以 圆 心

6、坐 标 为1(, 1).2故 选 d2b【解析】试题分析:设圆的标准方程为(x-a )2+(y-b )2=r2,根据已知条件可得(1-a )2+( 1b)2=r2,( 1a)2+(1b)2=r2,a+b-2=0 ,联立,解得a=1,b=1,r=2所以所求圆的标准方程为(x1)2+( y1)2=4故选 b。另外,数形结合,圆心在线段ab的中垂线上,且圆心在直线x+y2=0 上,所以圆心是两线的交点,在第一象限,故选b。考点:本题主要考查圆的标准方程点评:待定系数法求圆的标准方程是常用方法。事实上,利用数形结合法,结合选项解答更简洁。3 d【 解 析 】 由22()0 xayb知00,.xaybx

7、ayb且且故选 d4c【解析】试题分析:两圆x2+y24x+6y=0 和 x2+y26x=0 的圆心分别为 ( 2,3),(3,0),所以连心线方程为 3xy9=0, 选 c.考点:本题主要考查圆与圆的位置关系、圆的性质。点评:数形结合,由圆心坐标确定连心线方程。5b【解析】试题分析:圆的一般方程要求220 xydxeyf中2240def。即22(4)( 2)4 50mm,解得141mm或,故选 b。考点:本题主要考查圆的一般方程。点评:圆的一般方程要求220 xydxeyf中2240def。6a【解析】考查直线斜率和倾斜角的关系。7a 【解析】试题分析:22220 xyxy半径为2,所以周长

8、为2 2,故选 a。考点:本题主要考查圆的一般方程与标准方程的转化。点评:简单题,明确半径,计算周长。8d【解析】直线斜率为负数,纵截距为正数,选d9d【解析】试题分析: 因为点 (1,2aa) 在圆 x2+y22y4=0 的内部, 所以将点 (1,2aa) 的坐标代入圆的方程左边应小于0,即22(2 )(1)2 (1)0aaa,解得51a1,故选 d 。考点:本题主要考查点与圆的位置关系。点评:点在圆的内部、外部,最终转化成解不等式问题。10d【解析】点p在圆(x1)2+y2=1内部(5a+1 1)2+(12a)21a131.11 4【 解 析 】 方程 x2+y2+dx+ey+f=0配方得

9、22224()().224dedefxy根据条件得:22242,4,4 ;224dedef解得4.f123140 xy,2100 xy,4y【解析】线段ab的中点为( 1 5),线段bc的中点为(3 4),线段ac的中点为(4 3),三角形各边上中线所在的直线方程分别是512581yx,346324yx,4y,即3140 xy,2100 xy,4y13见解析【解析】试题分析:证明一:由a,b两点确定的直线方程为:166388yx即:02yx把 c(5,7)代入方程的左边:左边0275右边c点坐标满足方程c在直线 ab上 a,b ,c三点共线证明二:25163822ab2136785281735

10、2222acbcacbcaba,b, c三点共线 .考点:本题主要考查直线方程、斜率公式、两点间距离公式的应用。点评:多种方法证明三点共线,一题多解的典型例题。14 (1)2x+3y-1=0 (2)2x-y+5=0(3)4x+y-6=0或 3x+2y-7=0 ( 4)03yx或04yx.【解析】略15圆的方程为x2 y28x8y120【解析】解:由题意可设圆的方程为x2 y2dxey f0 (d2e24f 0)圆过点a(2, 0) 、b( 6,0) 、 c(0, 2)81280240636024fedfefdfd圆的方程为x2y28x8y 12016所求圆的方程为x2+(y 1)2=10【解析

11、】设圆的方程为x2+(y b)2=r2圆经过a、b两点, 222222( 1)(4)3(2)brbr解得2110br所以所求圆的方程为x2+(y 1)2=101722(1)(2)10 xy【解析】试题分析:解:xybax-2y-3=0o因为 a( 2, 3) ,b( 2, 5),所以线段ab的中点 d的坐标为( 0, 4) ,又5( 3)1222abk,所以线段ab的垂直平分线的方程是24yx联立方程组23024xyyx,解得12xy所以,圆心坐标为c( 1, 2),半径|rca22(21)( 32)10,所以,此圆的标准方程是22(1)(2)10 xy考点:本题主要考查圆的方程求法。点评:求

12、圆的方程,常用待定系数法,根据条件设出标准方程或一般方程。有时利用几何特征,解答更为简便。18 (1)见解析;(2).052,321yxxy即【解析】试题分析: (1) 直线方程47112:mymxml, 可以改写为0472yxyxm,所以直线必经过直线04072yxyx和的交点 . 由方程组04,072yxyx解得1, 3yx即两直线的交点为a) 1 ,3(又因为点1 , 3a与圆心2, 1c的距离55d, 所以该点在c 内,故不论m取什么实数 , 直线 l 与圆 c恒相交 .(2) 连接 ac , 过a作 ac 的垂线 ,此时的直线与圆c 相交于b、d.bd为直线被圆所截得的最短弦长 .此

13、时 ,545252,5,5bdbcac所以. 即最短弦长为54.又 直 线ac的 斜 率21ack, 所 以 直 线bd的 斜 率 为2. 此 时 直 线 方 程为:.052,321yxxy即考点:本题主要考查直线与圆的位置关系、直线方程。点评:研究直线与圆的位置关系,可根据条件灵活选用“代数法”或几何法。19 yx的最大值为3。同理可得最小值为-3【 解 析 】 解:设yx=k,得 y=kx ,所以 k 为过原点的直线的斜率。又x2+y2-4x+1=0 表示以(2,0)为圆心,半径为3的圆,所以当直线y=kx 与已知圆相切且切点在第一象限时,k最大。此时,|cp|=3,|oc|=2 ,rtp

14、oc中,60opoc,tan603ok。所以yx的最大值为3。同理可得最小值为-3。2022(1)(3)25xy【解析】试题分析:解法一:设所求圆的方程是222()()xaybr因为 a( 4,1) , b(6, 3) ,c( 3,0)都在圆上,所以它们的坐标都满足方程,于是222222222(4)(1),(6)( 3),( 3)(0).abrabrabr可解得21,3,25.abr所以 abc的外接圆的方程是22(1)(3)25xy解法二:因为abc外接圆的圆心既在ab的垂直平分线上,也在bc的垂直平分线上,所以先求 ab 、bc的垂直平分线方程,求得的交点坐标就是圆心坐标exyocba31264abk,0( 3)1363bck,线段 ab的中点为( 5, 1),线段bc的中点为33(,)22,ab的垂直平分线方程为11(5)2yx, bc的垂直平分线方程333()22yx解由联立的方程组可得1,3.xy abc外接圆的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论