2017年数学中考专题《阅读理解题》_第1页
2017年数学中考专题《阅读理解题》_第2页
2017年数学中考专题《阅读理解题》_第3页
2017年数学中考专题《阅读理解题》_第4页
2017年数学中考专题《阅读理解题》_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2017 年数学中考专题阅读理解题题型概述【题型特征】阅读理解题一般篇幅比较长,由“阅读”和“问题”两部分构成,其阅读部分往往为学生提供一个自学材料,其内容多以定义一个新概念(法则 ),或展示一个解题过程,或给出一种新颖的解题方法,或介绍某种图案的设计流程等.学生必须通过自学,理解其内容、过程、方法和思想,把握其本质,才可能会解答试题中的问题. 阅读理解题呈现的方式多种多样,有纯文型 (全部用文字展示条件和问题)、图文型 (用文字和图形结合展示条件和问题)、表文型 (用文字和表格结合展示条件和问题)、改错型 (条件、问题、解题过程都已展示,但解题过程一般要改正).考查内容可以是学过知识的深入探

2、索,也可以是新知识的理解运用. 阅读理解题按解题方法不同常见的类型有:(1)定义概念与定义法则型;(2)解题示范 (改错 )与新知模仿型 ;(3)迁移探究与拓展应用型等. 【解题策略】解答阅读理解型问题的基本模式:阅读理解应用.重点是阅读,难点是理解,关键是应用.阅读时要理解材料的脉络,要对提供的文字、符号、图形等进行分析,在理解的基础上迅速整理信息,及时归纳要点,挖掘其中隐含的数学思想方法,运用类比、转化、迁移等方法,构建相应的数学模式或把要解决的问题转化为常规问题. 可根据其类型,采用不同的思路一般地: (1)定义概念、法则型阅读理解题以纯文字、符号或图形的形式定义一种全新的概念、公式或法

3、则等 .解答时要在阅读理解的基础上解答问题.解答这类问题时,要善于挖掘定义的内涵和本质, 要能够用旧知识对新定义进行合理解释,进而将陌生的定义转化为熟悉的旧知识去理解和解答. (2)解题示范、新知模仿型阅读理解题以范例的形式给出,并在求解的过程中暗示解决问题的思路技巧,再以思路技巧为载体设置类似的问题.解决这类问题的常用方法是类比、模仿和转化 ;正误辨析型阅读理解题抓住学生学习中的薄弱环节和思维漏洞,“刻意” 地制造迷惑,使得解答过程似是而非.解答时主要是通过对数学公式、法则、方法和数学思想的准确掌握,运用其进行是非辨别. (3)迁移探究与拓展应用型,即阅读新问题,并运用新知识探究问题或解决问

4、题,解答这类题的关键是认真阅读其内容,理解其实质,把握其方法、规律,然后加以解决. 真题精讲类型一定义概念与定义法则型典例 1 (2016湖北咸宁 )阅读理解 : 我们知道,四边形具有不稳定性,容易变形.如图 (1),一个矩形发生变形后成为一个平行四边形 .设这个平行四边形相邻两个内角中较小的一个内角为,我们把1sin的值叫做这个平行四边形的变形度. (1)若矩形发生变形后的平行四边形有一个内角是120 ,则这个平行四边形的变形度是; 猜想证明 : (2)若矩形的面积为1s,其变形后的平行四边形面积为1s,试猜想121,sins s之间的数量关系,并说明理由; 拓展探究 : (3)如图 (2)

5、,在矩形abcd中,e是ad边上的一点,且2abae ad,这个矩形发生变形后为平行四边形11111,abc d e为e的对应点,连接1111,b e b d,若矩形abcd的面 积 为4(0 )m m, 平 行 四 边 形111a b c d的 面 积 为2(0 )m m, 试 求11111a e ba d b的度数 . 【 解 析 】 (1) 根 据 新 定 义 , 平 行 四 边 形 相 邻 两 个 内 角 中 较 小 的 一 个 内 角18012060,所以1112 3sinsin60332; (2)设矩形的长和宽分别为,a b,其变形后的平行四边形的高为h.从面积入手考虑, 12,s

6、inhsab sahb,所以121,sinsabbbsahhh,因此猜想121sinss. (3)由2abae ad,可得2111111a ba ea d,即11111111a ba ea da b,可证明111b a e111d ab,则111111a b ead b,再证明111111111111a e bad bc b ea b e111a bc,由(2) 121sinss,可知111142sin2mabcm,可知1111sin2a b c,得出11130a bc,从而证明11111130ae ba d b. 【全解】 (1)根据新定义,平行四边形相邻两个内角中较小的一个内角为 : 18

7、012060, 1112 3sinsin60332. (2) 121sinss,理由如下:如图 (1),设矩形的长和宽分别为,a b,其变形后的平行四边形的高为h. 则12,sinhsab sahb,121,sinsabbbsahhh,121sinss. (3)由2abae ad,可得2111111abaead,即11111111a ba ea da b. 又111111b a ed a b,111b ae111d ab. 11111a b ea d b. 1111/adbcq,11111a e bc b e. 1111111111111a e ba d bc b ea b ea b c, 由

8、(2) 121sinss,可知111142sin2mabcm. 1111sin2a b c. 11130abc. 11111130ae ba d b. 1.(2016浙江舟山 )我们定义 :有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解 : 请你根据上述定义举一个等邻角四边形的例子; (2)问题探究 ; 如图 (1), 在等邻角四边形abcd中,,dababc ad bc的中垂线恰好交于ab边上一点p,连接,ac bd,试探究ac与bd的数量关系,并说明理由; (3)应用拓展 ; 如图 (2),在 rtabc与 rtabd中,90cd, 3,5bcbdab,将rtabd绕着点a顺时

9、针旋转角(0)bac得到rtab d(如图(3),当凸四边形ad bc为等邻角四边形时,求出它的面积. 【考情小结】此题属于几何变换综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,垂直平分线定理,等腰三角形性质,以及矩形的判定与性质,熟练掌握判定与性质是解本题的关键. 正确理解题目中的定义是关键. 类型二解题示范与新知模仿型(改错 ) 典例2 (2016浙江湖州 )定义 :若点( , )p a b在函数1yx的图象上,将以a为二次项系数,b为一次项系数构造的二次函数2yaxbx称为函数1yx的一个“派生函数”.例如 :点1(2,)2在函数1yx的图象上,则函数2122yx

10、x称为函数1yx的一个“派生函数” .现给出以下两个命题: (1)存在函数1yx的一个“派生函数” ,其图象的对称轴在y轴的右侧(2)函数1yx的所有“派生函数”的图象都经过同一点,下列判断正确的是( ). a.命题 (1)与命题 (2)都是真命题b.命题 (1)与命题 (2)都是假命题c.命题 (1)是假命题,命题(2)是真命题d.命题 (1)是真命题,命题(2)是假命题【解析】 (1)根据二次函数2yaxbx的性质,a b同号对称轴在y轴左侧,,a b异号对称轴在y轴右侧即可判断. (2)根据“派生函数”2,0yaxbx x时,0y,经过原点,不能得出结论. 【全解】 (1)( , )p

11、a b在1yx上,a和b同号,所以对称轴在y轴左侧,存在函数1yx的一个“派生函数” ,其图象的对称轴在y轴的右侧是假命题. (2)函数1yx的所有“派生函数”为2yaxbx,0 x时,0y, 所有“派生函数”为2yaxbx经过原点,函数1yx的所有“派生函数”的图象都进过同一点,是真命题. 故选 c. 2. (2014湖南永州 )在求 1+6+62+63+64+65+66+67+68 + 69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6 倍,于是她设 : s=1+6+62+63+64+65+66+67+68+69.然后在式的两边都乘以6,得6s=6+62+63+64+65 +

12、66 +67+68 +69+610.,得6ss =6101,即 5s = 6101,所以10615s.得出答案后,爱动脑筋的小林想 : 如果把 “6”换成字母 “a”(0a且1a),能否求出23420141aaaaa的值?你的答案是 ( ). a.201411aab.201511aac.20141aad.20141a3. (2015广西南宁 )对于两个不相等的实数,a b,我们规定符号max,a b表示,a b中的较大值,如 :max2,4=4,按照这个规定,方程max21,xxxx的解为 ( ) a.12b.22c.12或12d.12或 1 4. (2015浙江湖州 )如图,已知抛物线211

13、11:cya xbxc和22222:cya xb xc都经过原点,顶点分别为,a b,与x轴的另一个交点分别为,m n,如果点a与点b,点m与点n都关于原点o成中心对称,则抛物线1c和2c为姐妹抛物线,请你写出一对姐妹抛 物 线1c和2c, 使 四 边 形anbm恰 好 是 矩 形 , 你 所 写 的 一 对 抛 物 线 解 析 式 是和. 【考情小结】弄清题中的技巧是解题的关键.我们只要按照示例中的思路技巧去类比、模仿,一般不会做错,做题时要克服思维定势的影响和用“想当然”代替现实的片面意识. 类型三迁移探究与拓展应用型典例 3 (2016江西 )如图,将正n边形绕点a顺时针旋转60后,发现

14、旋转前后两图形有另一交点o,连接ao,我们称ao为“叠弦” ;再将“叠弦”ao所在的直线绕点a逆时针旋转60后,交旋转前的图形于点p, 连接po, 我们称oab为 “叠弦角”,aop为“叠弦三角形”. 【探究证明】(1)请在图 (1)和图 (2)中选择其中一个证明:“叠弦三角形”(aop)是等边三角形 ; (2)如图 (2),求证 : oaboae. 【归纳猜想】(3)图(1)、图 (2)中的“叠弦角”的度数分别为,; (4)图n中, “叠弦三角形”等边三角形 (填“是”或“不是”) (5)图n中, “叠弦角”的度数为(用含n的式子表示 ) 【全解】 (1)如图 (1), 四边形abcd是正方

15、形,由旋转知 : ,90 ,adaddd60dadoap, d a pd a o. apdaod( asa) . a pa o. 60oap, aop是等边三角形. (2)如图 (2), 作amde于m,作ancb于n. 五边形abcde是正五边形,由旋转知 :,108 ,60aeaeeeeaeoap, e a pe a o. a p ea o e( asa). o a ep a e. 在 rtaem和 rtabn中,72aemabnaeab, rt aemrt abn(aas). ,eamban aman. 在 rtapm和 rtaon中,apaoaman,rt apmrt aon(hl).

16、 pamoan. paeoab. oaeoab(等量代换 ). (3)由(1)有,apdaod,dapd ao在ad o和abo中,adabaoao, ad oabo. d aobao. 由旋转,得60dad, 90dab, 30d abdabdad. 1152d add ab. 同理可得,24e ao, 故答案为 :15,24 .(4)如图 (3), 六边形abcdef和六边形a b c d e f是正六边形,120ff. 由旋转,得,afafefe f, apfae f. pafe af. 由旋转,得60 ,fafapao. 60paofao. pao是等边三角形. 故答案为 :是(5)图

17、n中是正n边形 .同(3)的方法得,180(2)18060260oabnnn. 故答案:18060n. 5. (2016广东梅州 )如图,在平面直角坐标系中,将abo绕点a顺时针旋转到11abc的位置,点,b o分别落在点11,b c处,点1b在x轴上,再11abc绕点1b顺时针旋转到12abc的位置,点2c在x轴上,将12abc绕点2c顺时针旋转到222a b c的位置,点2a在x轴上,依次进行下去., 若点3(,0),(0, 2)2ab,则点2016b的坐标为. 6. (2016湖北荆州 )阅读 :我们约定, 在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该

18、点的“特征线”.例如,点m(1,3) 的特征线有 :1,3,2,4xyyxyx. 问题与探究 :如图,在平面直角坐标系中有正方形oabc, 点b在第一象限 , ,a c分别在x轴和y轴上,抛物线21()4yxmn,经过,b c两点,顶点d在正方形内部 . (1)直接写出点(, )d m n所有的特征线; (2)若点d有一条特征线是1yx,求此抛物线的解析式; (3)点p是ab边上除点a外的任意一点,连接op,将oap沿着op折盛,点a落在点a的位置,当点a在平行于坐标轴的d点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在op上? 7. (2915溯南郴州 )阅读下面的材料:

19、 如果函数( )yf x满足 :对于自变量x的取值范围内的任意12,x x. (1)若12xx,都有12()()f xf x,则称( )f x是增函数 ; (2)若12xx,都有12()()f xf x,则称( )f x是减函数 . 例题 :证明函数2( )(0)f xxx是减函数 . 证明 :假设12xx,且120,0 xx,212112121212222()22()()xxxxf xf xxxx xx x, 12xx且120,0 xx,21120,0 xxx x. 21122()0 xxx x,即12()()0f xf x. 12()()f xf x. 函数2( )(0)f xxx是减函数

20、 . 根据以上材料,解答下面的问题: (1)函数2221111( )(0),(1)1,(2)124fxxffx. 计算 :(3)f= ,(4)f= , 猜想21( )(0)f xxx是函数 (填 “增”或“减” ); (2)请仿照材料中的例题证明你的猜想. 【考情小结】 解答本类题要仔细审题,理解题意所给的方法,达到学以致用的目的.例 3主要考查了锐角三角函数关系知识,根据已知得出边,ac ab的长是解题关键.举一反三考查了一道关于不等式的新型题和一道正误辨析型阅读理解题.提供的阅读材料中,在进行开方时,没有注意一个正数的平方根有两个.本题考查的知识点是用配方法解一元二次方程. 参考答案1.(

21、1) 矩形或正方形 ; (2)acbd,理由为 : 连接,pd pc,如图 (1)所示 : pe是ad的垂直平分线,pf是bc的垂直平分线,,papd pcpb, ,padpdapbcpcb, 2,2dpbpadapcpbc, 即padpbc,apcdpb. apcdpb(sas), acbd; (3)分两种情况考虑: (i)当ad bd bc时,延长,adcb交于点e,如图 (2)所示,ed bebd, ebed. 设ebedx. 由勾股定理,得2224(3)(4)xx, 解得4.5x. 过点d作d fce于f, /d fac. ed feac. d fedacae, 即4.5444.5d f,解得3617d f. 11(34.5)1522acesacec; 113681221717bedsbed f, 则81415101717acebedacbdsss四边形,(ii) 当90d bcacb时,过点d作d eac于点e, 如图 (3)所示,四边形ecbd是矩形 . 3edbc. 在rt aed中,根据勾股定理,得22437ae,113 73222aedsaed, (47)123 7ecbdscecb矩形,3 73 71231222aedecbdacbdsss矩形四边形,2. b 3. d 4.答案不唯一,比如232 3yxx和232 3yxx.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论