整式的加减全章知识点总结_第1页
整式的加减全章知识点总结_第2页
整式的加减全章知识点总结_第3页
整式的加减全章知识点总结_第4页
整式的加减全章知识点总结_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二章整式的加减知识点1、单项式的概念式子3x, a2,xy, 2.6t3, m它们都是数或字母的积,象这样的式子叫做单项式,单独的一个数或一个字母也是单项式。注意:单项式是一种特殊的式子,它包含一种运算、三种类型。一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如 2ab;二是字母与字母组成的式子,如xy3;三是单独的一个数或字母,如 2, a,m。知识点2、单项式的系数单项式中的数字因数叫做这个单项式的系数。ab注意:(1)单项式的系数可以是整数,也可能是分数或小数。如2x4的系数是2;空的系3,一1 ,一,

2、一数是一,2.7m的系数是2.7。3(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如2xy的系数是22 (3)对于只含有字母因素的单项式,其系数是1或一1,不能认为是0,如一xy的2系数是一1; xy的系数是1。(4)表示圆周率的,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。如 2 xy的系数就是2知识点3、单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。如单项式2x4y3z的次数是字母x, y,z的指数和,即4+3+1

3、=8,而不是7次,应注意 字母Z的指数是1而不是0.(2)单项式是一个单独字母时,它的指数是 1,如单项式m的指数是1,单项式是单 独的一个常数时,一般不讨论它的次数。(3)单项式的指数只和字母的指数有关,与系数的指数无关。如单项式一24x2y3z4的次数是2+ 3+4=9而不是13次。(4)单项式通常根据实验室的次数进行命名。如6x是一次单项式,2 xyz是三次单项知识点4、多项式的有关概念(1)多项式:几个单项式的和叫做多项式。(2)多项式的项:多项式中的每个单项式叫做多项式的项。(3)常数项:不含字母的项叫做常数项。(4)多项式的次数:多项式里次数最高项的次数叫做多项式的次数。(5)整式

4、:单项式与多项式统称整式。注意:a、概念中“几个单项式的和”是指两个或两个以上的单项式相加。如2a 3a 4x ,2+ 37等这样的式子都是多项式。 3b、多项式的每一项都包含前面的符号,如多项式2xy 6a 9共有三项,它们分3别是一2xy , 6a, 9,一个多项式中含有几个单项式就说这个多项式是几项式如2xy3 6a 9共有三项,所以就叫三项式。c、多项式的次数不是所有项的次数之和,也不是各项字母的指数和,而是组成这个多项式的单项式中次数最高的那个单项式的次数,如多项式一2xy3 6a 9是由三个单项式2xy3, 6a, 9组成,而在这三个单项式中 2xy3的次数最高,且为 4次,所以这

5、个多项式的次数就是4.这是一个四次三项式。对于一个多项式而言是没有系数这一说法的。 知识点5、整式的书写(1)书写含乘法运算的式子a、省乘号要小心。当式子中出现乘法运算时,有些乘号可以省略不写。字母与字母相乘、 数字与字母相乘、数字(字母)与带括号的式子相乘、带括号的式子之间相乘时,其乘号可 以不写或写作“”,但对于数字与数字相乘时乘号则不能省略,也不能用“”。b、数字在前,字母在后。数字与字母相乘,数字与带括号的式子相乘时除中间乘号可以省 略不写之外,还必须把数字写在字母或括号的前面。c、带分数一定要化成假分数。(2)书写含除法运算的式子当式子中出现含有字母的除法运算时,结果一般不用“ 一

6、”,而改成分数线,如 ab 4应写7应写作a ab作,a 34(3)书写含单位名称的式子a、遇和差,括号加b、是积商,直接放知识点6、同类项的概念2 . 2 , 2像25m与一40m,4ab与一ab这样,所含字母相同,并且相同字母的指数也相同的 3项,叫做同类项。注意:a、同类项必须具备两个条件:所含字母相同;相同字母的指数也分别相同。二者缺一"不可。b、同类项与系数、字母的排列顺序无关。c、所有的常数项都是同类项,单独的一项不能说是同类项,同类项至少针对两项而言。知识点7、合并同类项(1)定义:把多项式中的同类项合并成一项,叫做合并同类项。(2)法则:合并同类项后,所得系数是合并前

7、各同类项系数的和,且字母部分不变。(3)它可以用“一变”、“两不变”来概括。“一变”是指同类项的系数变;“两不变”是指相同字母和相同字母的指数不变。口诀:同类项,需判断,两相同,是条件。合并时,需计算,系数加,两不变。注意:a、系数相加时,一定要带上各项前面的符号。b、合并同类项一定要完全、彻底,不能有漏项。c、只有是同类项才能合并。d、合并同类项的结果可能是单项式也可能是多项式。知识点8、去括号法则:括号前面是正号,去掉括号不变号;括号前面是负号,去掉括号要变号。(1)直接去括号2222例 1、计算:3x y 2x y xy 3xy例 2、计算:2x31 2x x21 2x x2 3x3一

8、、一2121例 3、计算:3 a 1 2a a a 5632222例 4、计算:2ab 3ab ab 2a b 3ab一、选择题1、用代数式表示a与-5的差的2倍是()A、a-(-5) X2 B 、a+(-5) X2 C 、2(a-5 ) D、2(a+5)2、用字母表示有理数的减法法则是()Aa-b=a+b B、a-b=a+(-b) C、a-b=-a+bD 、a-b=a-(-b)3、某班共有学生x人,其中女生人数占35%,那么男生人数是()A35%x B、(1 -35%)xC 、 D 、一x35%1 35%4、若代数式3ax7b4与代数式a4b2y是同类项,则xy的值是()A 9 B 、9 C

9、 、4 D 、45、把-x-x合并同类项得()一一一一一一一 2A 0 B 、-2 C 、-2xD 、-2x6、一个两位数,十位上的数字是x,个位上的数字是y,如果把十位上的数与个位上的数对调,所得的两位数是()A yx B 、 y+x C 、 10y+x D 、 10x+y7、如果代数式4y2 2y 5的值为7,那么代数式2y2 y 1的值等于()A 2B 3G 2D 48、下面的式子,正确的是()A、3a2+5a2=8a4B、5a2b-6ab2=-ab2C、6xy-9yx=-3xyD、2x+3y=5xy9、一个多项式加上x2y-3xy 2得2x2y-xy2,则这个多项式是()A 3x2y-

10、4xy2;B、x2y-4xy2;C、x2y+2xy2;D、-x 2y-2xy210、若A=x2 5x + 2, B=x2 5x-6,则A与B的大小关系是()(A) A>B(B) A=B(C) A<B (D)无法确定二、填空题3a2bc311、单项式 丝之的系数是次数是 ;512、x2 4x 1是次 项式,它的项分别是3其中常数项是;13、为鼓励节约用电,某地对居民用户用电收费标准作如下规定: 每户每月用电如果不超过100度,那么每度电价按a元收费;如果超过100度,那么超过部分 每度电价按b元收费。某户居民在一个月内用电160度,他这个月应缴纳电费是 元;(用含a、b的代数式表示)

11、14、三个连续偶数中,2n是最小的一个,这三个数的和为 15、如图1是小明用火柴搭的1条、2条、3条“金鱼” L L ,则搭n条“金鱼需要火柴 根.3条16、根据如图所示的程序计算,输出y若输入x的值为1,则输出y的值为三、解答题:17、化简 7-3x-4x 2+4x-8x2-15(2) 2(2a2-9b)-3( 4a2+b)(3) 8x 2-3x-(2x 2-7x-5)+3+4x18、先化简,后求值;(1) (5x-3y-2xy)-(6x+5y-2xy) ,其中 x 5, y 1x2y2的值,其中(2)若 a 2 b 3 20,求 3a2b2ab2 2 (ab-1.5a2b) +ab+3ab

12、2的值;19、有这样一道题,计算 2x4 4x3y x2y2 2 x4 2x3y y3 x=0.25, y=-1 ;甲同学把“ x=0.25”,错抄成“ x=-0.25 ”,但他的计算结果也是 正确的,你说这是为什么?20、“十一”黄金周期间,某风景区在7天中来旅游的人数变化如下表:(正数表 示比前一天多的人数,负数表示比前一天少的人数。)日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化(单 位:万人)+1.6+0.8+0.4-0.4-0.8+0.2-1.2(1)若9月30日来旅游人数记为a万人,请用a的代数式表示10月2日来旅 游的人数。(2)请判断七天内来旅游的人数最多是哪一天?最少是哪一天?它们相差多少万人?(3)统计来旅游的人数,最多的一天是3万人,问9月30日来旅游的人数有多 少人?答案:1、D 2、B 3、B 4、A 5、C 6、C 7、A 8、C 9、C 10、A.3211一、11、 612、二、二、x2、4x、53313、100a+60b 14、6n +6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论