




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.3.4平面与平面垂直的性质【课时目标】1理解平面与平面垂直的性质定理2能应用面面垂直的性质定理证明空间中线、面的垂直关系3理解线线垂直、线面垂直、面面垂直的内在联系1平面与平面垂直的性质定理:两个平面垂直,则一个平面内_于_的直线与另一个平面垂直用符号表示为:,l,a,al_2两个重要结论:(1)如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在_图形表示为:符号表示为:,A,Aa,a_(2)已知平面平面,a,a,那么_(a与的位置关系)一、选择题1平面平面,直线a,则()Aa BaCa与相交 D以上都有可能2平面平面l,平面,则()Al BlCl与斜交 Dl3若平面
2、与平面不垂直,那么平面内能与平面垂直的直线有()A0条 B1条 C2条 D无数条4设l是直二面角,直线a,直线b,a,b与l都不垂直,那么()Aa与b可能垂直,但不可能平行Ba与b可能垂直,也可能平行Ca与b不可能垂直,但可能平行Da与b不可能垂直,也不可能平行5已知两个平面互相垂直,那么下列说法中正确的个数是()一个平面内的直线必垂直于另一个平面内的无数条直线一个平面内垂直于这两个平面交线的直线必垂直于另一个平面内的任意一条直线过一个平面内一点垂直于另一个平面的直线,垂足必落在交线上过一个平面内的任意一点作交线的垂线,则此直线必垂直于另一个平面A4 B3 C2 D16如图所示,平面平面,A,
3、B,AB与两平面、所成的角分别为和过A、B分别作两平面交线的垂线,垂足分别为A、B,则ABAB等于()- 1 - / 6A21 B31 C32 D43二、填空题7若,l,点P,PD/l,则下列命题中正确的为_(只填序号)过P垂直于l的平面垂直于;过P垂直于l的直线垂直于;过P垂直于的直线平行于;过P垂直于的直线在内8、是两两垂直的三个平面,它们交于点O,空间一点P到、的距离分别是2 cM、3 cM、6 cM,则点P到O的距离为_9在斜三棱柱ABCA1B1C1中,BAC90°,BC1AC,则点C1在底面ABC上的射影H必在_三、解答题10如图,在三棱锥PABC中,PA平面ABC,平面P
4、AB平面PBC求证:BCAB11如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是DAB60°且边长为a的菱形侧面PAD为正三角形,其所在平面垂直于底面ABCD(1)若G为AD边的中点,求证:BG平面PAD;(2)求证:ADPB能力提升12如图所示,四棱锥PABCD的底面是边长为a的菱形,BCD120°,平面PCD平面ABCD,PCa,PDa,E为PA的中点求证:平面EDB平面ABCD13如图所示,在多面体PABCD中,平面PAD平面ABCD,ABDC,PAD是等边三角形,已知BD2AD8,AB2DC4(1)设M是PC上的一点,求证:平面MBD平面PAD;(2)
5、求四棱锥PABCD的体积1面面垂直的性质定理是判断线面垂直的又一重要定理,应用时应注意:(1)两平面垂直;(2)直线必须在一个平面内;(3)直线垂直于交线2此定理另一应用:由一点向一个平面引垂线,确定垂足位置是求几何体高的依据234平面与平面垂直的性质 答案知识梳理1垂直交线a2(1)第一个平面内a(2)a作业设计1D2D在面内取一点O,作OEm,OFn,由于,m,所以OE面,所以OEl,同理OFl,OEOFO,所以l3A若存在1条,则,与已知矛盾4C5B6A如图:由已知得AA面,ABA,BB面,BAB,设ABa,则BAa,BBa,在RtBAB中,ABa,7解析由性质定理知错误87 cm解析P
6、到O的距离恰好为以2 cm,3 cm,6 cm为长、宽、高的长方体的对角线的长9直线AB上解析由ACBC1,ACAB,得AC面ABC1,又AC面ABC,面ABC1面ABCC1在面ABC上的射影H必在交线AB上10证明在平面PAB内,作ADPB于D平面PAB平面PBC,且平面PAB平面PBCPBAD平面PBC又BC平面PBC,ADBC又PA平面ABC,BC平面ABC,PABC,BC平面PAB又AB平面PAB,BCAB11证明(1)连接PG,由题知PAD为正三角形,G是AD的中点,PGAD又平面PAD平面ABCD,PG平面ABCD,PGBG又四边形ABCD是菱形且DAB60°,BGAD又
7、ADPGG,BG平面PAD(2)由(1)可知BGAD,PGAD所以AD平面PBG,所以ADPB12证明设ACBDO,连接EO,则EOPCPCCDa,PDa,PC2CD2PD2,PCCD平面PCD平面ABCD,CD为交线,PC平面ABCD,EO平面ABCD又EO平面EDB,平面EDB平面ABCD13(1)证明在ABD中,AD4,BD8,AB4,AD2BD2AB2ADBD又面PAD面ABCD,面PAD面ABCDAD,BD面ABCD,BD面PAD,又BD面BDM,面MBD面PAD(2)解过P作POAD,面PAD面ABCD,PO面ABCD,即PO为四棱锥PABCD的高又PAD是边长为4的等边三角形,PO2在底面四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甘孜职业学院《大跨度空间结构》2023-2024学年第二学期期末试卷
- 2025届宁夏吴忠市高三上学期适应性考试(一模)历史试卷
- 2024-2025学年浙江省六校联盟高一上学期期中联考历史试卷
- 做账实操-代理记账行业的账务处理分录
- 长春大学旅游学院《幼儿舞蹈创编二》2023-2024学年第二学期期末试卷
- 2024-2025学年湖北省新高考联考协作体高一上学期期中考试历史试卷
- 济南工程职业技术学院《信息安全基础》2023-2024学年第二学期期末试卷
- 聊城大学东昌学院《病理学与病理生理学》2023-2024学年第二学期期末试卷
- 亳州职业技术学院《数据分析与可视化实验》2023-2024学年第二学期期末试卷
- 萍乡卫生职业学院《文化人类学理论》2023-2024学年第二学期期末试卷
- 2025年湖北省技能高考(建筑技术类)《建筑制图与识图》模拟练习试题库(含答案)
- 集成电路研究报告-集成电路项目可行性研究报告2024年
- 2024年湖南生物机电职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 桩基承载力自平衡法检测方案资料
- 2025云南昆明空港投资开发集团招聘7人高频重点提升(共500题)附带答案详解
- 简单的路线图(说课稿)2024-2025学年三年级上册数学西师大版
- 成都市2024-2025学年度上期期末高一期末语文试卷(含答案)
- 2025年教育局财务工作计划
- Unit 5 Now and Then-Lesson 3 First-Time Experiences 说课稿 2024-2025学年北师大版(2024)七年级英语下册
- 中小学智慧校园建设方案
- 中国食物成分表2020年权威完整改进版
评论
0/150
提交评论