空间几何体的结构课件ppt)_第1页
空间几何体的结构课件ppt)_第2页
空间几何体的结构课件ppt)_第3页
空间几何体的结构课件ppt)_第4页
空间几何体的结构课件ppt)_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、空间几何体的结构空间几何体的结构兆麟中学高一数学组兆麟中学高一数学组形状与大小形状与大小如果我们只考虑物体的如果我们只考虑物体的形状形状和和大小大小,而不考虑其它因素,而不考虑其它因素,那么由这些物体抽象出来的空间图形就叫做那么由这些物体抽象出来的空间图形就叫做空间几何体空间几何体。空间几何体空间几何体你能把这些几何体你能把这些几何体分成两类么?分成两类么?多面体多面体: 若干个平面多边形围成的几何体若干个平面多边形围成的几何体 面面-围成多面体的各个多边形围成多面体的各个多边形 棱棱-相邻两个面的公共边相邻两个面的公共边 顶点顶点-棱与棱的公共点棱与棱的公共点旋转体旋转体: 由一个平面图形绕

2、它所在平面内的由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体一条定直线旋转所形成的封闭几何体 1.棱柱的结构特征:棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形边形的公共边互相平行,由这些面围成的图形叫做叫做棱柱棱柱有两个面互相平行有两个面互相平行其余各面都是四边形其余各面都是四边形每相邻两个四边形的公共边互相平行每相邻两个四边形的公共边互相平行1、棱柱、棱柱DABCEFFAEDBCDABCEFFAEDBC侧棱侧棱侧面侧面底底面面顶点顶点棱柱的表示法:棱柱的表示法:用表

3、示底面的各顶点的字母表示。用表示底面的各顶点的字母表示。 如:六棱柱如:六棱柱ABCDEF-ABCDEF 1、两个互相平行的面叫棱柱的、两个互相平行的面叫棱柱的底面底面。 2、其余各面叫棱柱的、其余各面叫棱柱的侧面侧面。 3、相邻侧面的公共边叫、相邻侧面的公共边叫侧棱侧棱。 4、侧面与底面的公共顶点叫、侧面与底面的公共顶点叫 棱柱的棱柱的顶点顶点。 底面是三角形、四边形、五边形底面是三角形、四边形、五边形 的棱柱分别叫的棱柱分别叫三棱柱三棱柱 、四棱柱、五棱、四棱柱、五棱 柱柱 如何判断一个多面体是不是棱柱?如何判断一个多面体是不是棱柱?有两个面互相平行(有两个面互相平行(底面底面)其余各面都

4、是四边形(其余各面都是四边形(侧面侧面)每相邻两个侧面的公共边每相邻两个侧面的公共边(侧棱侧棱)都互都互相平行相平行棱柱棱柱思考思考?长方体按如图截去一角后所得的两部分还是棱柱长方体按如图截去一角后所得的两部分还是棱柱吗?吗?ABCDABCD探究问题探究问题 1: 有两个面互相平行有两个面互相平行,其余各面都是平行四边形的几其余各面都是平行四边形的几何体是棱柱吗何体是棱柱吗?定义定义:1、有两个面互相平行,、有两个面互相平行,2、其余各面都是四边形,、其余各面都是四边形,3、每相邻两个四边形的公共边、每相邻两个四边形的公共边 都互相平行。都互相平行。探究问题探究问题 2:2.棱锥的结构特征:棱

5、锥的结构特征:有一个面是多边形有一个面是多边形 其余各面都是其余各面都是 有一个公共顶点的三角形。有一个公共顶点的三角形。 棱锥的分类:棱锥的分类: 按底面多边形的边数,可以分为三按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥、棱锥、四棱锥、五棱锥、棱锥的表示法:棱锥的表示法:棱锥棱锥S-ABCDDABCPQDACBS四棱锥:四棱锥:S-ABCD 其他的三角形面没有其他的三角形面没有共一个顶点共一个顶点练习:下列几何体是不是棱锥练习:下列几何体是不是棱锥, ,为什么为什么? ?3.棱台的结构特征棱台的结构特征ABCDABCD用一个平行于棱锥底面的平面去截棱锥用一个平行于棱锥底面的平面去截棱

6、锥,底面与底面与截面之间的部分是棱台截面之间的部分是棱台.上上底底面面侧面侧面侧棱侧棱下底面下底面顶点顶点棱台的表示:棱台的表示:用表示底面的各顶点的字母表用表示底面的各顶点的字母表示。示。 如:棱台如:棱台ABCD-ABCD底面是三角形,四边形,五边形底面是三角形,四边形,五边形-的棱台分的棱台分别叫三棱台,四棱台,五棱台别叫三棱台,四棱台,五棱台-下底面和上底面:原棱锥的底面和截面下底面和上底面:原棱锥的底面和截面 分别叫做棱台的下底面和上底面。分别叫做棱台的下底面和上底面。侧面:原棱锥的侧面也叫做棱台的侧面侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。(截后剩余部分)。侧棱:原棱锥

7、的侧棱也叫棱台的侧棱侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。(截后剩余部分)。顶点:上底面和侧面,下底面和侧面顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点的公共点叫做棱台的顶点。练习:下列几何体是不是棱台练习:下列几何体是不是棱台, ,为什么为什么? ? 不能还原为棱锥(侧棱延长线不交于一点)探究问题探究问题 3: 两个底面平行且相似两个底面平行且相似,其余各面都是梯形的几何体其余各面都是梯形的几何体一定是棱台吗一定是棱台吗?注意:(注意:(1)截面与底面)截面与底面平行平行 ABCDABCDS(2)通过延长侧棱,能够)通过延长侧棱,能够还原为棱锥还原为棱锥的才是棱台的才是

8、棱台四棱台四棱台ABCD-ABCD内容小结:内容小结: (2)有两个面)有两个面_ _,其余各面都是,其余各面都是_,并且,并且_ _ 由这些面所围成的多面体叫做棱柱由这些面所围成的多面体叫做棱柱 (4)用一个)用一个_ _去截棱锥,底面与截面之间的部去截棱锥,底面与截面之间的部分叫做棱台分叫做棱台. (3)有一个面是)有一个面是_;其余各面是;其余各面是_形成的封闭几何体叫棱锥形成的封闭几何体叫棱锥(1)由)由_ _围成的几何体叫做多面体;围成的几何体叫做多面体;由平面图形绕所在平面内的一条直线由平面图形绕所在平面内的一条直线_ _形成的封闭形成的封闭几何体叫旋转体几何体叫旋转体若干个平面多

9、边形若干个平面多边形旋转所旋转所互相平行互相平行四边形四边形每相邻两个四边形的公共边都互相平行每相邻两个四边形的公共边都互相平行多边形多边形有一个公共顶点的三角形有一个公共顶点的三角形平行于棱锥底面的平面平行于棱锥底面的平面1.下面几何体中哪些是棱柱?下面几何体中哪些是棱柱?巩固习题:巩固习题: 2.如图,螺丝杆头部是什么几何体?它有几对平行平面如图,螺丝杆头部是什么几何体?它有几对平行平面? 能作为底面的有几对能作为底面的有几对?3.下图中不可能围成正方体的是下图中不可能围成正方体的是( )ADCBB4 长方体长方体AC1中,中,AB=3,BC=2,BB1=1,由,由A到到C1在长方体表面上

10、的最短距离是多少?在长方体表面上的最短距离是多少?A1DACBD1B1C1AA1B1BC1D1CC1B1A1BADD1C1A1AB15、判断下列几个命题中的对错、判断下列几个命题中的对错有两个面平行,其余各面都是四边形的几何体叫棱柱有两个面平行,其余各面都是四边形的几何体叫棱柱 有两个面平行,其余各面都是平行四边行的几何体叫棱柱有两个面平行,其余各面都是平行四边行的几何体叫棱柱 有一个面是多边形,其余各面都是三角形的几何体叫棱锥有一个面是多边形,其余各面都是三角形的几何体叫棱锥 两个面平行且相似,其余各面都是梯形的多面体是棱台两个面平行且相似,其余各面都是梯形的多面体是棱台 有两个面互相平行,

11、其余四个面都是等腰梯形的六面体是棱台有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台 棱台各侧棱的延长线交于一点棱台各侧棱的延长线交于一点 各侧面都是正方形的四棱柱一定是正方体各侧面都是正方形的四棱柱一定是正方体 ( )( )( )( )( )( )()菱形菱形SABCDABCD如图,正四棱锥如图,正四棱锥S-ABCD被一平行于底面的平面被一平行于底面的平面ABCD所截,其中所截,其中A为为SA的中点的中点.若四棱锥的底边若四棱锥的底边AB=4,求截得的正棱台,求截得的正棱台ABCD-ABCD的上底面面积的上底面面积和下底面的面积之比。和下底面的面积之比。 例例6 一个三棱柱可以分割成几

12、个三棱锥?一个三棱柱可以分割成几个三棱锥?ACA1BB1C1ACBC1AA1BC1A1BB1C1BAAOBO轴轴底面底面侧侧面面母母线线 注:棱柱与圆柱统称为柱体注:棱柱与圆柱统称为柱体 如果我们只考虑物体占用空如果我们只考虑物体占用空间部分的形状和大小,而不间部分的形状和大小,而不 考虑其它因素,那么由这些考虑其它因素,那么由这些 物体抽象出来的空间图形,物体抽象出来的空间图形,就叫做空间几何体。就叫做空间几何体。(1)(2)(3)(4)(5)(6)(7)(8)(10)(9)DABCEFFAEDBC思考思考1:倾斜后的:倾斜后的几何体还是柱体吗?几何体还是柱体吗?BAAOBO轴轴底面底面侧侧

13、面面母母线线4.圆柱的结构特征圆柱的结构特征 圆柱用表示它的轴的字母表示圆柱用表示它的轴的字母表示.如:如:圆柱圆柱SO以矩形的一边所在直线为旋转轴以矩形的一边所在直线为旋转轴,其余边旋转形成其余边旋转形成的面所围成的旋转体叫做圆柱。的面所围成的旋转体叫做圆柱。圆柱的轴:旋转轴叫做圆柱的轴。圆柱的轴:旋转轴叫做圆柱的轴。圆柱侧面的母线:无论旋转到什么位置,圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。不垂直于轴的边都叫做圆柱侧面的母线。圆柱的侧面:平行于轴的边旋转而成的圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆的侧面。曲面叫做圆的侧面。圆柱的底面:垂直于轴的边旋转而

14、成圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。的圆面叫做圆柱的底面。注:棱柱与圆柱统称为柱体注:棱柱与圆柱统称为柱体S顶点顶点ABO底面底面轴轴侧侧面面母母线线5.圆锥的结构特征:圆锥的结构特征: 以直角三角形的一条直角边所在直线为旋转轴以直角三角形的一条直角边所在直线为旋转轴, 两两余边旋转形成的面所围成的旋转体叫做圆锥。余边旋转形成的面所围成的旋转体叫做圆锥。圆锥可以用它的轴来表示。圆锥可以用它的轴来表示。如:如:圆锥圆锥SO轴:作为旋转轴的直角边叫做圆锥的轴。轴:作为旋转轴的直角边叫做圆锥的轴。母线:无论旋转到什么位置,直角三角形母线:无论旋转到什么位置,直角三角形的斜边叫做圆

15、锥的母线。的斜边叫做圆锥的母线。顶点:作为旋转轴的直角边与斜边的交点顶点:作为旋转轴的直角边与斜边的交点侧面:直角三角形斜边旋转形成的曲侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面。面叫做圆锥的侧面。底面:另外一条直角边旋转形成的圆底面:另外一条直角边旋转形成的圆面叫做圆锥的底面。面叫做圆锥的底面。注:棱锥与圆锥统称为锥体注:棱锥与圆锥统称为锥体6.圆台的结构特征圆台的结构特征OO用一个平行于圆锥底面的平面去截圆锥用一个平行于圆锥底面的平面去截圆锥,底面与截面之底面与截面之间的部分是圆台间的部分是圆台.AB圆台的轴,底面,侧面,母线与圆锥相似圆台的轴,底面,侧面,母线与圆锥相似注:棱台与圆

16、台统称为台体。注:棱台与圆台统称为台体。 7、球的结构特征、球的结构特征以半圆的直径所在的直线为旋转轴,半圆面旋以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体。转一周形成的几何体叫做球体。OABC直径直径球球心心半径:半圆的半径叫做球的半径。半径:半圆的半径叫做球的半径。半半 径径球心:半圆的圆心叫做球的球球心:半圆的圆心叫做球的球 心。心。直径:半圆的直径叫做球的直径。直径:半圆的直径叫做球的直径。球的表示:球的表示:用球心字母表示用球心字母表示如:球如:球O例例3、判断下列几个命题中的对错、判断下列几个命题中的对错分别以矩形两条不等的边所在直线为旋转轴分别以矩形两条不等

17、的边所在直线为旋转轴,将矩形旋转,所得到的两个,将矩形旋转,所得到的两个 圆柱是两个不圆柱是两个不同的圆柱同的圆柱 以直角三角形的一直角边为轴旋转所得的以直角三角形的一直角边为轴旋转所得的旋转体是圆锥旋转体是圆锥 以直角梯形的一腰为轴旋转所得的旋转体以直角梯形的一腰为轴旋转所得的旋转体是圆台是圆台 圆锥的侧面展开图为扇形,这个扇形所在圆圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径的半径等于圆锥底面圆的半径( )( )()()小结:小结:棱锥棱锥棱柱棱柱圆锥圆锥圆柱圆柱圆台圆台考一考:考一考:空间几何体空间几何体多面体多面体旋转体旋转体棱锥棱锥棱台棱台棱柱棱柱圆台圆台圆柱圆柱

18、圆锥圆锥锥体锥体台体台体柱体柱体球球棱台棱台球球结构特征结构特征棱柱棱柱棱锥棱锥棱台棱台 定义定义两个平面互相平行,两个平面互相平行,其余各面都是四边形,其余各面都是四边形,并且每相邻两个四边并且每相邻两个四边形的公共边都平行,形的公共边都平行,这些面围成的几何体这些面围成的几何体称为棱柱称为棱柱有一面为多边形,有一面为多边形,其余各面是有一个其余各面是有一个公共顶点的三角形,公共顶点的三角形,这些面围成的几何这些面围成的几何体叫做棱锥体叫做棱锥用一个平行于棱锥底用一个平行于棱锥底面的平面去截棱锥,面的平面去截棱锥,底面与截面之间的部底面与截面之间的部分这样的多面体叫做分这样的多面体叫做棱台棱台底面底面两底面的全等的多边两底面的全等的多边形形多边形多边形两底面是相似的多边两底面是相似的多边形形侧面侧面平行四边形平行四边形三角形三角形梯形梯形侧棱侧棱平行且相等平行且相等相交于顶点相交于顶点延长线交于一点延长线交于一点平行于底平行于底面的平面面的平面与两底面是全等的多与两底面是全等的多边形边形与底面是相似的多与底面是相似的多边形边形与两底面是相似的多与两底面是相似的多边形边形过不相邻过不相邻两侧棱的两侧棱的截面截面平行四边形平行四边形三角形三角形梯形梯形结构特征结构特征圆柱圆柱圆锥圆锥圆台圆台球球定义定义以矩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论