版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、圆锥曲线中的离心率问题(答案)一、直接求出a、c,求解e已知标准方程或a、c易求时,可利用离心率公式来求解。例1. 过双曲线C:的左顶点A作斜率为1的直线,若与双曲线M的两条渐近线分别相交于点B、C,且|AB|=|BC|,则双曲线M的离心率是( )A. B. C. D. 分析:这里的,故关键是求出,即可利用定义求解。解:易知A(-1,0),则直线的方程为。直线与两条渐近线和的交点分别为B、C,又|AB|=|BC|,可解得,则故有,从而选A。二、变用公式,整体求出e例2. 已知双曲线的一条渐近线方程为,则双曲线的离心率为( )A. B. C. D. 分析:本题已知,不能直接求出a、c,可用整体代
2、入套用公式。解:由(其中k为渐近线的斜率)。这里,则,从而选A。三、第二定义法由圆锥曲线的统一定义(或称第二定义)知离心率e是动点到焦点的距离与相应准线的距离比,特别适用于条件含有焦半径的圆锥曲线问题。例3. 在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为( )A. B. C. D. 解:由过焦点且垂直于长轴的弦又称为通径,设焦点为F,则轴,知|MF|是通径的一半,则有。由圆锥曲线统一定义,得离心率,从而选B。四. 构造a、c的齐次式,解出e根据题设条件,借助a、b、c之间的关系,构造出a、c的齐次式,进而得到关于e的方程,通过解方程得出离心率e的值,这
3、也是常用的一种方法。例4. 已知、是双曲线的两焦点,以线段F1F2为边作正,若边的中点在双曲线上,则双曲线的离心率是( )A. B. C. D. 解:如图,设的中点为P,则点P的横坐标为,由,由焦半径公式,即,得,有,解得(舍去),故选D。高考试题分析1.(2009浙江理)过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为若,则双曲线的离心率是 ( )A B C D答案:C 【解析】对于,则直线方程为,直线与两渐近线的交点为B,C,因此2.(2009浙江文)已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴, 直线交轴于点若,则椭圆的离心率是( )A B C D 【解析】对于椭
4、圆,因为,则 3.(2009山东卷理)设双曲线的一条渐近线与抛物线y=x+1 只有一个公共点,则双曲线的离心率为( ). A. B. 5 C. D.【解析】:双曲线的一条渐近线为,由方程组,消去y,得有唯一解,所以=,所以,故选D4.(2009安徽卷理)下列曲线中离心率为的是 (A) (B) (C) (D) 解析由得,选B5.(2009江西卷文)设和为双曲线()的两个焦点, 若,是正三角形的三个顶点,则双曲线的离心率为 A B C D3【解析】由有,则,故选B.6.(2009江西卷理)过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为 A B C D 【解析】因为,再由有从
5、而可得,故选B7.(2009全国卷理)已知双曲线的右焦点为,过且斜率为的直线交于两点,若,则的离心率 (A) A B. C. D. 8. (2008福建理11)双曲线(a0,b0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为(B)A.(1,3)B.C.(3,+)D.利用第二定义及焦半径判断9.(2008湖南理8)若双曲线(a0,b0)上横坐标为的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B )A.(1,2) B.(2,+) C.(1,5) D. (5,+)解析:利用第二定义10.(2008江西理7)已知、是椭圆的两个焦
6、点,满足的点总在椭圆内部,则椭圆离心率的取值范围是(C)A B C D解析:满足的点总在椭圆内部,所以c<b.11.(2008全国二理9)设,则双曲线的离心率的取值范围是( B )ABCD12.(2008湖南文10)双曲线的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( C )A B C D 利用焦半径公式及,解不等式即可。13.(2007全国2理)设分别是双曲线的左、右焦点,若双曲线上存在点,使且,则双曲线的离心率为( B )ABCD解14.(07江苏理3)在平面直角坐标系中,双曲线中心在原点,焦点在轴上,一条渐近线方程为,则它的离心率为(A)A B C D
7、(注意焦点在轴上)15.(07湖南文)设分别是椭圆()的左、右焦点,是其右准线上纵坐标为(为半焦距)的点,且,则椭圆的离心率是( D )ABCD16(07北京文4)椭圆的焦点为,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是(D)17.(2009重庆卷文)已知椭圆的左、右焦点分别为,若椭圆上存在一点使,则该椭圆的离心率的取值范围为 【答案】. 解法1,因为在中,由正弦定理得则由已知,得,即设点由焦点半径公式,得则记得由椭圆的几何性质知,整理得解得,故椭圆的离心率18.(2009湖南卷理)已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,则双曲线C的离心率为
8、【解析】连虚轴一个端点、一个焦点及原点的三角形,由条件知,这个三角形的两边直角分别是是虚半轴长,是焦半距,且一个内角是,即得,所以,所以,离心率19.(2008全国一理15)在中,若以为焦点的椭圆经过点,则该椭圆的离心率 20.(2010辽宁文数)设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(A) (B) (C) (D)解析:选D.不妨设双曲线的焦点在轴上,设其方程为:,则一个焦点为一条渐近线斜率为:,直线的斜率为:,解得.21、(2010四川理数)(9)椭圆的右焦点,其右准线与轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点,则
9、椭圆离心率的取值范围是(A) (B) (C) (D)解析:由题意,椭圆上存在点P,使得线段AP的垂直平分线过点,即F点到P点与A点的距离相等而|FA| , |PF|ac,ac,于是ac,ac即acc2b2acc2Þ 又e(0,1)故e答案:D22.(2010辽宁理数)(20)(本小题满分12分)设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60o,.(I) 求椭圆C的离心率;(II) 如果|AB|=,求椭圆C的方程.解:设,由题意知0,0.()直线l的方程为 ,其中.联立得解得因为,所以.即 得离心率 . 6分()因为,所以.由得.所以,得a=3,.椭圆C的方程为. 8书是我们时代的生命别林斯基书籍是巨大的力量列宁书是人类进步的阶梯高尔基书籍是人类知识的总统莎士比亚书籍是人类思想的宝库乌申斯基书籍举世之宝梭罗好的书籍是最贵重的珍宝别林斯基书是唯一不死的东西丘特书籍使人们成为宇宙的主人巴甫连柯书中横卧着整个过去的灵魂卡莱尔人的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社会工作专业实习报告
- 债券投资分析与交易方法与案例解析01(论文资料)
- 心灵成长(课件)-生产经营管理-经管营销-专业资料
- 吉林省长春市文曲星名校2025届高三(最后冲刺)英语试卷含解析
- 福建省泉州市德化一中2025届高三第一次调研测试英语试卷含解析
- 福建省泉州永春侨中2025届高三下学期联合考试英语试题含解析
- 安徽省阜阳四中、阜南二中、阜南实验中学2025届高三第二次联考语文试卷含解析
- 2025届云南省文山州广南二中高三适应性调研考试语文试题含解析
- 内蒙古一机集团第一中学2025届高三第三次测评数学试卷含解析
- 2025届山东省淄博一中高考临考冲刺语文试卷含解析
- 医务科工作思路(计划)6篇
- GB/T 13912-2020金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法
- GA 614-2006警用防割手套
- 智慧购物中心整体解决方案
- 压力表以及压力变送器-课件
- BIM技术咨询管理服务招标投标文件技术标
- 最美动画大师新海诚介绍PPT讲义
- 送达地址确认书(完整版)
- 高中化学必修1 优秀课件萃取
- 河北省邢台市药品零售药店企业药房名单目录
- 外贸基础知识考题(50题)
评论
0/150
提交评论