数学建模实验报告-统计回归模型_第1页
数学建模实验报告-统计回归模型_第2页
数学建模实验报告-统计回归模型_第3页
数学建模实验报告-统计回归模型_第4页
数学建模实验报告-统计回归模型_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数学建模与数学实验实验报告实验2统计回归模型专业、班级学号姓名课程编号实验类型验证性学时2实验(上机)地点教七楼数学实验中心完成时间任课教师评分、实验目的及要求1 .掌握数学软件 Matlab, c+的基本用法和一些常用的规则,能用该软件进行编程;2 .能够借助数学软件进行统计回归数学模型问题的求解和分析;3 .理解统计回归数学模型的数学原理,并能够分别利用统计回归数学模型进行实际问题的建模。二、借助数学软件,研究、解答以下问题某公司想用全行业的销售额作为自变量来预测公司的销售量,表中给出了1977 1981年公司的销售额和行业销售额的分季度数据(单位:百万元)(1)画出数据的散点图,观察用线

2、性回归模型拟合是否合适。(2)建立公司销售额对全行业的回归模型,并用DW检验诊断随机误差项的自相关性。(3)建立消除了随机误差项自相关性之后的回归模型年季t公司销售额y行业销售额x19771120.96127.32221.40130.03321.96132.74421.52129.419781522.39135.02622.76137.13723.48141.24823.66142.819791924.10145.521024.01145.331124.54148.341224.30146.4198011325.00150.221425.64153.131526.36157.341626.98

3、160.7198111727.52164.221827.78165.631928.24168.742028.78171.7数据散点图一.画数据的散点图如下,观察发现用线性回归模型yt=Po+PiXt+,拟合比较合适。29 28 27 26 25 24 23 22 21 20125130135140145150155160165170175行业销售额x代码:x=127.3,130.0,132.7,129.4,135.0,137.1,141.2,142.8,145.5,145.3,.148.3,146.4,150.2,153.1,157.3,160.7,164.2,165.6,168.7,171.

4、7'y=20.96,21.40,21.96,21.52,22.39,22.76,23.48,23.66,24.10,24.01,.24.54,24.30,25.00,25.64,26.36,26.98,27.52,27.78,28.24,28.78'plot(x,y, '.')title('数据散点图)xlabel('行业销售额x');ylabel('公司销售额y')二.建立公司销售额对全行业的回归模型,并用DW佥验诊断随机误差项的自相关性。1.模型求解结果:b =-1.45480.1763bint =-1.9047-1.

5、00480.17320.1793stats =00.00001.0e+004 *0.00011.4888-0.1-0.2-0.32468101214161820Case Number0.30.20.1Residual Case Order Ploto结果分析:y的100%可由模型确定,F=14888远超过F检验的临界值,p远小于a =0.05, 0,日1的置信区间bint不包含零点,但是,从图中可以看出,第4个点的残差的置信区 问rint不包含零点,应作为异常点去掉。代码:figure%模型求解X=ones(20,1) x;b,bint,r,rint,stats=regress(y,X);b,

6、bint,stats,rcoplot(r,rint)2 .去掉第4个异常点后的模型求解结果:b0 =-1.60930.1773bint0 =-2.0403-1.17830.17440.1802stats0 =1.0e+004 *0.00011.675200.00000.250.20.150.10.050-0.05-0.1-0.15-0.2-0.25Residual Case Order Plot24681012141618Case Number代码:%去除第4个点(异常点)x0=127.3,130.0,132.7,135.0,137.1,141.2,142.8,145.5,145.3,.148

7、.3,146.4,150.2,153.1,157.3,160.7,164.2,165.6,168.7,171.7'y0=20.96,21.40,21.96,22.39,22.76,23.48,23.66,24.10,24.01,.24.54,24.30,25.00,25.64,26.36,26.98,27.52,27.78,28.24,28.78'X0=ones(19,1) x0;b0,bint0,r0,rint0,stats0=regress(y0,X0);b0,bint0,stats0,rcoplot(r0,rint0)结果分析:y的100%可由模型确定,F=16752远超

8、过F检验的临界值,p远小于"=0.05,Po,Pi的置信区间bint不包含零点,数据点的残差置信区间rint均包含零点,所以模型yt =-1.6093+0.1773% ,从整体上看成立。3 .自相关性的定量诊断一一DW检验由DW值的大小确定自相关性:查D-W分布表,得到检验水平a =0.05,样本容量n=19, 回归变量数目k=2时,对应的检验临界值:dL =1.18,dU =1.40。因为结果求得DW0=0.6412<dL =1.18,所以该模型存在 正自相关。 代码: %自相关性检验Y=b0(1)+b0(2).*x0;Et=y0-Y;%模型残差figure dw1=sum(

9、Et(2:19,1)-Et(1:18,1)A2); dw2=sum(Et(2:19,1)A2); DW0=dw1/dw2三.建立消除了随机误差项自相关性之后的回归模型1 .广义差分变换原模型:yt = :。 . rxt -叶,叶二P二tut变换: y; =yt - ;yt4,x*-新模型:yt; =?(*-x; , ut, -(* 二:;0 1 -(新模型是以 铝,良为回归系数的普通回归模型,由数据y;,x;可估计系数 稣,3)代码: % 广义差分变换 low=1-DW0/2;x1=zeros(18,1); y1=zeros(18,1); for t=2:19y1(t-1,1)=y0(t)-l

10、ow*y0(t-1); x1(t-1,1)=x0(t)-low*x0(t-1); end2 .新模型求解结果:b1 = -0.4537 0.1760 bint1 =-0.7970-0.11040.16910.1829stats1 =1.0e+003 *0.00102.937400.0000Residual Case Order Plot0.20.150.15 0 59 9 o o- epaurtpseR-0.1-0.15-0.21012141618Case Number结果分析:y的100%可由模型确定,F=2937.4远超过F检验的临界值,p远小于« =0.05, 弟,儿的置信区间

11、不包含零点,但从图中看出,第12个点的残差的置信区间不包含零 点,应作为异常去掉。代码:%新模型求解X1=ones(18,1) x1;b1,bint1,r1,rint1,stats1=regress(y1,X1);b1,bint1,stats1,rcoplot(r1,rint1)3 .新模型的自相关性中验定量诊断一一DW检验由DW值的大小确定自相关性:查 D-W分布表,得到检验水平 口 =0.05样本容量n=18,回归变 量数目k=2时,对应的检验临界值:dL =1.16& =1.39。因为结果求得1.39=dU <DW1 =1.6537 <4-dU =2.61,所以新模型

12、无自相关。代码:%新模型自相关性检验Y1=b1(1)+b1(2).*x1;Et1=y1-Y1;%莫型残差Y1(:,1)=b1(1)+b1(2).*x1(:,1);Et1(:,1)=y1(:,1)-Y1(:,1);%莫型残差dw3=sum(Et1(2:18,1)-Et1(1:17,1)A2);dw4=sum(Et1(2:18,1)A2);DW1=dw3/dw44 .消除了随机误差项自相关性之后的回归模型:Ayt =-0.3948 0.1305yt0.1738xt -0.1096xtJ三、本次实验的难点分析1 .DW检验DW的求解(1)难点:DW的求解不仅涉及模型残差,而且计算公式复杂,需要掌握数

13、组及矩阵的相关运算, 并使用FOR-END循环。(2)解决:先利用已求得的回归系数曰0,口写出模型,以此得估计值 y' ;然后做数组减法yt -yt得et,最后由以下公式:n'.et - e _t =2DW 二 n 2 ' et t =2做矩阵运算(减法、乘法等)求得DW值。其中求和号可用函数 sum。2 .广义差分法关键是通过变换yt* =yt 自y,x* =xt 取式P=1DW播到新模型。四、参考文献1姜启源,谢金星,叶俊.数学模型(第三版),高等教育出版社,20032邓薇.MATLAB函数速查手册,人民邮电出版社,2010DW检验表出师表两汉:诸葛亮先帝创业未半而

14、中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。然侍卫之臣 不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。诚宜开张圣听,以光 先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。宫中府中,俱为一体;陟罚臧否,不宜异同。若有作奸犯科及为忠善者,宜付有司论其 刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑思纯,是以先帝简拔以遗陛下:愚 以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之日能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。亲贤臣,远小人,此先汉所以兴隆也; 亲小人,远贤臣,此后汉所以倾颓也。 先帝在时, 每与臣论此事,未尝不叹息痛恨于桓、 灵也。侍中、尚书、长史、参军,此悉贞良死节之臣, 愿陛下亲之、信之,则汉室之隆,可计日而待也 ”二。臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。先帝不以臣卑鄙,猥自枉 屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。后值倾覆,受任于 败军之际,奉命于危难之间,尔来二十有一年矣。先帝知臣谨慎

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论