版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、離散數學中許多有趣的問題By 孫一凡 老師簡介離散數學亦稱組合數學。自古的數學,算術與幾何便分別代表了離散與連續觀念的源頭。兩種思維相互發展,培育了數學世界。但自牛頓開創微積分以後,連續性數學便獨領風騷三百年。今日離散數學的假设干題材,雖可在數論、代數、機率、幾何等學科中發現其身影,但始終是理論深度不明的研讨課題。 本世紀以來 離散的工具與方法,逐漸在各個學科中被發展及运用,而產生出新的焦點及新的科學意識。一些彼此關連的研讨領域,開始匯聚。 特別自三十年代以後,計算科學在理論與實用上都有突破性的發展。這是因為電腦的出現。電腦利用離散的表示處理資訊,離散現象的重要開始被重視。此外,電腦幫人處理大
2、量的有限數及有限結構,跑出了很多新層次的問題需研讨。 離散數學包含了什麼? 包羅了許多學域,比較重要的包括以下幾種: 古典計算問題,包括有限集合上的各類陈列組合問題 以代數、拓樸方法建立組合學體系的研讨 以群論、有限幾何為主要工具的設計理論(Design Theory) 圖形、網路與超圖的理論(Hypergraphs)請修:組合設計初步請修:組合設計初步請修:圖論初步、離散專題請修:圖論初步、離散專題請修:離散數學請修:離散數學離散數學包含了什麼?最正确化、運籌學(Operation Research)與賽局理論(Game Theory)編碼(Coding Theory)與密碼理論(Crypt
3、ography)擬陣(Matroid)、廣義擬陣論(Greedoid)離散與計算幾何學演算法則的設計與分析請修:代數編碼學、密碼學請修:代數編碼學、密碼學請修:演算法請修:演算法離散數學有些什麼應用? 在應用方面,最大的市場之一是資訊科學,已成為資訊系的必修課程。數位化的產物,如光碟、大哥大、衛星通訊等等都仰賴錯誤糾正碼(Error Correcting Code)設計以添加可靠性;提款卡、簽帳卡等也是密碼學的附產品;另外,DNA的定序問題,選舉權力的分析,生物食物網的平衡,實驗設計的安排,處處可見離散數學應用的例子。討論整數 也可說是組合數學的重要關鍵 整數Z與實數R不同,兩者分別代表了離散
4、觀念與連續觀念。 因此離散數學中,整數的觀念通常相當重要,整數與整數的關係也是如此,可以廣泛的應用在許多事上。正整數 : 1,2,3,4,5,6, 零 : 0負整數 : -1,-2,-3,-4, 單數(奇數) : 1,3,5, 雙數(偶數) : 0,2,4,6, 先看一些整數的性質 來熱熱身!性質 1 :奇數: (odd) 被2除餘1的數字 任何奇數都可表為 2n+1 的方式偶數: (even)可被2整除的數字 任何偶數都可表為 2n 的方式動動腦 1某班49位同學,坐成七行七列。每個座位的前後左右稱做它的鄰座。要同時讓這49位同學中的每一位都換到他的鄰座上去,能否能辦到?提示當一聲令下,一切
5、同學都換到他們的鄰座時,本来坐 位子的同學會換到本来就坐 的位子,可是 . . . . :24個 :25個 所以,不能够!性質 2 :奇數 + 奇數 = 偶數偶數 + 偶數 = 偶數奇數 + 偶數 = 奇數奇數 - 奇數 = 偶數偶數 - 偶數 = 偶數奇數 - 偶數 = 奇數動動腦 2設 a1, a2, a3, ,a8 是1,2,3,8的一種恣意陈列。 如:1,8,7,6,5,2,3,4令b1=|a1-a2|,b2=|a3-a4|, ,b4=|a7-a8|c1=|b1-b2|,c2=|b3-b4|=|c1-c2| 這樣不断做下去,最後得到的整數一定會為偶數。例如:1, 8, 7, 6, 5,
6、 2, 3, 4 7 1 3 1 6 2 44, 8, 1, 6, 5, 3, 2, 7 4 5 2 5 1 3 2Why?1. a1+ a2+ a3+ + a8 = 1+ + 8 = 362. b1=|a1-a2|,b2=|a3-a4|, b3=|a5-a6|,b4=|a7-a8| 則 b1+b2+b3+b4 =|a1-a2|+|a3-a4|+|a5-a6|+|a7-a8| = ? 如何將絕對值拆掉?3. 假设a1a2 則|a1-a2|= a1-a2 a1a2 則|a1-a2|= a2-a1 4. 假設絕對值都拆掉了,上式會變成如 = (a1-a2)+(a4-a3)+(a6-a5)+(a7-
7、a8) = (a1+a4+a6+a7)-(a2+a3+a5+a8) 之類的 (總之,有4個數字在前括號中,另外4 個數字在後括號中)5. (a1+a4+a6+a7)+(a2+a3+a5+a8) = 36 因為A+B=偶數,則A,B必同為偶數或同為 奇數,所以A-B必為奇-奇或偶-偶 = 偶數6. 如此一來,上一列的總和為偶數,下一列 的總和也必為偶數,則最後的必為偶數動動腦 3在平面上恣意標出五個整數座標的點。證明:其中必至少有兩個點,它們的連線的中點也是整數座標的點。 提示1:(x1,y1)與(x2,y2)的連線中點座標為 (x1+x2)/2,(y1+y2)/2)提示2:整數點只會有以下四種
8、奇偶性: (奇,奇) (偶,偶) (奇,偶) (偶,奇)根據鴿洞原理,5個整數點中必有某兩點的奇偶性一样! (因為奇偶性總共只需四種,點有五個) 而當兩點(x1, y1), (x2, y2)有一样奇偶性時 x1+ x2 與 y1 + y2都是偶數 即 (x1+x2)/2 與 (y1+y2)/2皆為整數 (x1+x2)/2,(y1+y2)/2)為整數點性質 31. 奇數個奇數的和必為奇數2. 假设假设干個整數a1a2a3的連乘積 是奇數,則其中每個數ai都是奇數動動腦 4設 n 為一奇數。又設 a1,a2, ,an 是1,2, ,n 的恣意一種陈列。求證:(1- a1)(2- a2) (n- a
9、n)必為偶數。假設(1- a1)(2- a2) (n- an)為奇數則 1- a1 , 2- a2 , , n- an 都是奇數 (1- a1)+(2- a2)+(n- an) =1+2+n - (a1+a2+an) =1+2+n - (1+2+n) = 0 產生矛盾!動動腦 5n 個整數 a1, a2, ,an 滿足以下等式 (i) a1a2an = n (ii) a1+a2+an = 0 求證: n 為 4 的倍數。假设n為奇數,且滿足 a1a2an = n則, a1、a2、an皆為奇數a1+a2+an 即為奇數個奇數的和(=奇數)0且因為a1+a2+an=0,所以a1、a2、an中 奇數
10、必為偶數個,則偶數也必為偶數個, 即a1、a2、an中偶數至少兩個, 所以 a1a2an 連乘積必為4的倍數!動動腦 6某博物館共有25間展覽室,如圖所示,這裡相鄰的展覽室之間都有門相通。參觀者自東北角大門口開始參觀,希望依次不重複地看遍每一間展覽室之後仍回到東北角大門去。請問參觀者有哪幾種路線可以參觀?如圖示,東北角的展覽室為藍色,無論選擇怎樣路線,看展覽的順序依序為藍1-橘1-藍2-橘2-藍3-橘12-藍13(因為藍展覽室有13間,橘展覽室有12間) 然後呢? 藍13必須接到藍1啊!?矛盾!定理 1任何一個非完全平方數的正整數都有偶數個因數。如20的正因數有:1, 2, 4, 5, 10,
11、 2025的正因數有:1, 5, 25動動腦 7有一百盞燈,陈列成一列,從左至右依次標上 1,2,100 這些號碼。每一盞燈都有一根拉線開關。另外,還有一百個人。最初燈全是關著的,第一個人走過來把號碼為1的倍數的燈的開關拉一下;接著第二個人走過來把號碼為2的倍數的燈的開關拉一下;第三個人走過來把號碼為3的倍數的燈的開關拉一下;如此繼續著,最後那個人走過來把最後那盞燈的開關拉一下。這樣做過之後,請問留下哪些燈是亮著的?號碼為 k 的燈,會不會被第i個人所拉,端看i是不是k的因數,是,則此人拉,不是,則此人不拉! 所以, 1. 假设 k 有 t 個因數則此盞燈共被拉了t次。 2. 燈本来全都是關的
12、,被拉奇數次的燈是亮的,被 拉偶數次的燈是關的 3. 所以最後亮著的燈為號碼 k 只需奇數個因數, 為完全平方數,即: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 只需這10盞燈是亮的!動動腦 8在一條環形公路上,n個車站被n段公路連接了起來。車站所在地的海拔高度共有5米和10米兩種。相鄰車站假设海拔高度一样,則他們之間的公路是程度的;假设不同,則他們之間的公路是有坡的。有一個旅遊者開車在這條環形公路上沿順時針方向繞了一圈,發現有坡的公路段數與程度公路段數一樣多。求證:車站的個數 n 是 4 的倍數。因為:有坡的公路段數與程度公路段數一樣多,表示n為偶數,所以n個
13、路段中一半為程度路段、一半為有坡度路段。但是,有坡度路段中,一半為上坡、一半為下坡才回得來啊!,所以,n為4的倍數。12543612345動動腦 9有 n 個數 1, 2, , n,一切的數只能為1或-1。假设 12+23+n-1n+n1=0求證: n 是 4 的倍數。 提示:跟上一題有關係 把這 n 個數 1, 2, , n想成 n 個車站, 海拔10公尺的車站標為1,海拔5公尺的車站標為-1。 如此一來,12假设為1,表示兩車站同為1或同為-1 12假设為-1,則表示兩車站一為1一為-1,也就是 12為1表示該路段為程度路段, 12為-1表示該路段為有坡度路段, 12+23+n-1n+n1
14、 = 0表示兩種路段 數目一样,而有坡度的路段繞一圈後上坡下坡各一半 因此, n 是 4 的倍數。12 , 23 , , n-1n , n1當中 1的個數等於-1的個數,所以 n = 2k假设 12 =1 則 1=2 =1 或 1=2 = -1 表示從1到2符號沒有發生變化假设 12 =-1 則說明符號有發生變化從1開始,最後回到1,說明這一過程中發生了k次符號變化,但1與本身是同號的,所以k也為偶數。動動腦 10一百個人排成一列縱隊。從頭到尾報完數之後,凡報奇數的一概出列,只需報偶數的仍依次留在隊列之中,接著從頭至尾再次報數,凡報奇數者一概出列,留下報偶數者,接著第三次從頭到尾報數,如此進行
15、下去,請問最後留在隊列中的那個人,他在第一次報數時報多少號?提示:第一次留下誰?第二次之後留下誰? 第三次之後留下誰?第一次留下了:2,4,6,8,10,12,14,16,18,20,第二次留下了:4,8,12,16,20,第三次留下了:8,16,也就是說,擁有2最多的數可以留到越後面,那麼1100中,誰有2的次數最多呢? 答案是:64 = 26定理 2 偶數的平方可以被 4 整除。奇數的平方被 8 除,餘數為 1。因為(2k)2 = 4k2 (2h+1)2 = 4h2+4h+1 = 4h(h+1)+1 h與h+1中必有一個為偶數,所以 4h(h+1)+1 = 8m+1動動腦 11求證:x2+1=8yn 沒有整數解。假设 x 是偶數明顯有問題!假设 x 是奇數,則 x2 被 8 除餘 1所以 x2+1 被 8 除餘 2,但是右式為 8 的倍數動動腦 12求證:正整數a與b,ab為偶數 假设且唯假设存在正整數c與d使
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文化产业示范基地复核书
- 河北省邢台市威县寺庄中学2024-2025学年八年级上学期期中地理试题(含答案)
- 实验室用拭子实验室工具产业链招商引资的调研报告
- 吉他弦桥市场需求与消费特点分析
- 单肩包市场发展预测和趋势分析
- 人教版英语八年级下册 Unit 1-3 单元阅读训练
- 高效灌溉技术在蔬菜种植中的应用分析报告
- 可充气薄橡胶玩具市场需求与消费特点分析
- 土耳其毡帽产业规划专项研究报告
- 城市公共设施门窗改造方案
- 快手2025CNY《寨子里的歌晚》招商项目方案
- 2023年唐山银行招聘考试真题
- 《小学低年级语文说话能力培养的研究》课题实施方案
- 大型机械运输服务方案
- 心肌炎护理查房课件
- 广告图像数码喷印材料市场
- 2024年安徽芜湖事业单位联考高频难、易错点500题模拟试题附带答案详解
- 2024年公司工会工作计划模版(三篇)
- 2024年秋季新人教版7年级上册生物课件 第2单元 第1章大单元整体设计
- 9.1增强安全意识课件-2024-2025学年统编版道德与法治七年级上册
- 炸药及火工品生产过程中的安全防护技术考核试卷
评论
0/150
提交评论