AI人工智能技术的应用范围和案例_第1页
AI人工智能技术的应用范围和案例_第2页
AI人工智能技术的应用范围和案例_第3页
AI人工智能技术的应用范围和案例_第4页
AI人工智能技术的应用范围和案例_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、AI 人工智能技术的应用范围和案例人工智能( Artificial Intelligence ),也就是常说的为 AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、 方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支, 它企图了解智能的实质, 并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟, 应用领域也不断扩大, 可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器” 。作为一门学科,人工智能于 1956 年问世,由“人工智能之父“ McCa

2、rthy 及一批数学家、信息学家、心理学家、神经生理学家、计算机科学 Dartmouth 大学召开的会议上,首次提出。当前人工智能己在如下一些领域和方向取得了深入的应用和发展:机器人,金融 , 零售,无人驾驶,智能医疗等。1. 人工智能在机器人方向的应用人工智能在智能机器人中应用所要经过的过程为:大数据1、识别过程,外界输入的信息向概念逻辑信息转译,将动态静态图像、声音、语音、文字、触觉、味觉等信息转化为形式化(大脑中的信息存储形式)的概念逻辑信息。2、智能运算过程,输入信息刺激自我学习、信息检索、逻辑判断、决策,并产生相应反应。3、控制过程,将需要输出的反应转译为肢体运动和媒介信息。人工智能

3、实体将首先在精确思维能力上超过人, 然后在模糊思维能力上超过人。由于创造力是个性化的产物, 较高的创造力不是复制及经验的吸收所能产生的,它需要通过个性化的学习来获得, 而个性化的学习不是短时间内所能完成的,因而人工智能实体在创造力上全面超过人将需要较长的时间。 一旦人工智能实体的创造力超过人其智力水平也就能远远超过人。 “智能机器人”将在工业、服务业、军事、航空航天等领域发挥越来越重要的作用。今天,尽管我们的机器人已经具备了一定的智能,但距离真正的“智能机器人”还有相当大的差距。随着生理学,行为学等学科的发展,随着我们对人脑的工作方式的理解进一步的加深,随着机器视觉和自然语言理解等人工智能领域

4、在机器人上的应用, 机器人终将成为真正意义上的 “智能机器人”。这是充满了生机与活力科研领域。研制机器人的最初目的是为了帮助人们摆脱繁重劳动或简单的重复劳动,以及替代人到有辐射等危险环境中进行作业,因此机器人最早在汽车制造业和核工业领域得以应用。 随着机器人技术的不断发展, 工业领域的焊接、喷漆、搬运、装配、铸造等场合,己经开始大量使用机器人。另外在军事、海洋探测、航天、医疗、农业、林业甚到家用机器人,服务娱乐行业,也都开始使用机器。大数据2. 人工智能在金融行业的应用人工智能在金融领域的应用,主要通过机器学习、语音识别、视觉识别等方式来分析、预测、辨别交易数据、价格走势等信息,从而为客户提供

5、投资理财、股权投资等服务,同时规避金融风险,提高金融监管力度。A 是一家投资组合风险分析公司,专注于发现财务波动事件,帮助用户大数据检测市场异常并量化金融扰动。 A 分析引擎的深度数据算法利用主要数据源(世界金融交易所)和专有的无人监管机器学习技术。与其他竞争解决方案不同, A 的实时分析并不依赖于历史数据或先前的波动事件。计算机视觉与生物特征识别应用人脸识别与安全监控。计算机视觉与生物特征识别技术,让机器可以更准确的识别人的身份与行为,对于帮助金融机构识别客户和安全监控都有很多便利。 一是可以利用网点和 ATM 摄像头,增加人像识别功能,提前识别发现可疑人员、提示可疑行为动作,也可以帮助识别

6、 VIP 客户。二是可以利用网点柜台内部摄像头,增加对员工可疑行为识别监控,记录并标记疑似违规交易, 并提醒后台监控人员进一步分析,起到警示作用。三是可以在银行内部核心区域(如数据中心机房、金库等)增加人像识别摄像头,人员进出必须通过人脸识别及证件校验方可进入,同时对于所有进出人员进行人像登记,防止陌生人尾随进出相关区域,实现智能识别,达到安全防范的目标。Jeremy透露,正常情况下,不同人群在市场中的行为表现形式应该是不同的。如果出现了相似的行为, 就说明该市场出现了问题。 AlgoDynamix花大价钱买到了全球12 家证券交易所的数据,包括北美、欧洲、中国、新加坡等国,当从数据分析中得出

7、市场不正常的结论,就会及时发出警告。他们将软件卖给大型银行,将和人类分析师共同合作完成项目。 Jeremy 强调他们的目的不在于取代人类分析师,而是帮助他们做得更好。大数据3. 人工智能在零售行业的应用人工智能在零售领域的应用, 主要是利用大数据分析技术, 智能的管理仓储与物流、导购等方面,用以节省仓储物流成本、提高购物效率、简化购物程序。主要应用在仓储物流、智能导购和客服等场景中。说起人工智能和零售的应用, 你第一个想到的是什么?亚马逊的无人智能零售店Amazon Go?送匹萨的机器人? AR试衣?这些高科技产品似乎已有概念但还无大规模应用。 但其实,人工智能在零售方面的应用离我们很近,它正

8、在润物细无大数据声的改变着这个行业。电子商务是个最明显的例子。打开手机逛逛淘宝,输入关键字“衬衫” 。是否有想过,为什么每次你看到的商品都是你喜欢的 muji 性冷淡风,而隔壁李二狗搜出来的衬衫却大部分是海澜之家?其实,就都是 AI 基于你先前的纪录为你做的精准推送。人工智能在电商已经做到了智能推荐、智能比价、实时定价、销售预测、智能客服,甚至社交功能这些其实都可以在线上实现。这可不是奇思妙想,已经有多家公司正在着手发展这块的业务。Trax是一家来自以色列的创业公司, 他成功的将图像识别技术应用到了零售这一特定行业中。只要拍一张货架上的照片,图片会自动传入 Trax云里,让小 T 思考个几分钟

9、,它就会立刻生成一份即时的解决方案, 并生成可多平台预览的数据报告,无论你是安卓还是苹果, 无论你拿电脑还是手机都可以随时看到这份报告!这样看起来好像没什么, 但是要做到对图片中同个产品不同颜色包装的识别, 是非常有技术含量的。而且, Trax还能组合机器人一起使用。随时捕获店铺当下的高清图片,自动抓取核心信息, 输出当下的零售解决方案, 辅助管理人员做出最准确的决策!这点还不够, AI 不单可从顾客角度,提供更个性化的推荐,还能覆盖客户在购买期间可能发生的问题: 如解决商场停车问题的智能停车和找车, 解决物流问题的直接配送到家的运输机器人。大数据AI零售1、对顾客管理的智能化重点体现在对顾客

10、的分析、锁定目标顾客、抓取目标顾客、精准推送、分析目标顾客潜在需求方面,真正实现对每一位消费者的360 度全方位画像 ;2、对商品管理的智能化基于顾客需求的多样化和商品的极大丰富,企业借助智能化手段进行商品管理,并最终向柔性生产和提供个性化商品过渡3、对供应链管理的智能化建立高效的供应链系统,形成基于消费者、门店销售、客户一体化的供应链智能管理体系, 提升企业经营效率, 降低企业库存和供应链成本。4、对物流管理的智能化确保正确的货物进了正确的仓库,同时发货效率将大大提高。把用户端潜在需求的判断联动到供应链、 物流仓储系统, 应用智能技术解决类似商品部署在哪些仓库, 如何让商品堆放更合理, 物流

11、配送路径的优化等问题。4. 人工智能在无人驾驶领域的应用大数据作为人工智能等技术在汽车行业、 交通领域的延伸与应用, 无人驾驶近几年在世界范围内受到了产学界甚至国家层面的密切关注。无人驾驶其实并不新鲜。 早在上世纪八十年代,美国就启动了相关研究项目。无人驾驶最近几年又火起来,原因主要有两方面:一是技术,包括人工智能、车载软硬件及网络的飞速发展,过去的不可能现在变为可能;二是需求,人们的生活已经离不开汽车,但随着汽车保有量的增加,事故、拥堵、污染等负面影响逐渐显现,需要新技术新方法提高交通的安全性、舒适性、经济性以及环保性。无人驾驶实际上是类人驾驶,即计算机模仿人类驾驶员的驾驶行为,目标是使计算

12、机成为一位眼疾手快、全神贯注、经验丰富、永不疲倦的虚拟司机,最终将人类从低级、繁琐、持久的驾驶活动中解放出来。无人驾驶重复着“感知认知行为”的过程。感知人类驾驶员感知依靠眼睛和耳朵,无人驾驶汽车感知依靠传感器。目前传感器性能越来越高、 体积越来越小、 功耗越来越低, 其飞速发展是无人驾驶热潮的重要推手。反过来,无人驾驶又对车载传感器提出了更高的要求,又促进了其发大数据展。用于无人驾驶的传感器可以分为四类:1. 雷达传感器。主要用来探测一定范围内障碍物(比如车辆、行人、路肩等)的方位、距离及移动速度,常用车载雷达种类有激光雷达、毫米波雷达和超声波雷达。激光雷达精度高、探测范围广,但成本高,比如G

13、oogle 无人车顶上的 64 线激光雷达成本高达 70 多万元人民币; 毫米波雷达成本相对较低, 探测距离较远,被车企广泛使用,但与激光雷达比精度稍低、可视角度偏小;超声波雷达成本最低,但探测距离近、精度低,可用于低速下碰撞预警。2. 视觉传感器。主要用来识别车道线、 停止线、交通信号灯、 交通标志牌、行人、车辆等。常用的有单目摄像头、双目摄像头、红外摄像头。视觉传感器成本低,相关研究与产品非常多,但视觉算法易受光照、阴影、污损、遮挡影响,准确性、鲁棒性有待提高。 所以,作为人工智能技术广泛应用的领域之一的图像识别,也是无人驾驶汽车领域的一个研究热点。3. 定位及位姿传感器。主要用来实时高精

14、度定位以及位姿感知,比如获取经纬度坐标、速度、加速度、航向角等,一般包括全球卫星定位系统( GNSS)、惯性设备、轮速计、里程计等。现在国内常用的高精度定位方法是使用差分定位设备,如 RTK-GPS,但需要额外架设固定差分基站,应用距离受限,而且易受建筑物、 树木遮挡影响。近年来很多省市的测绘部门都架设了相当于固定差分基站的连续运行参考站系统( CORS),比如辽宁、湖北、上海等,实现了定位信号的大范围覆盖,这种基础设施建设为智能驾驶提供了有力的技术支撑。定位技术是无人驾驶的核心技术, 因为有了位置信息就可以利用丰富的地理、 地图等先验知识,可以使用基于位置的服务。4. 车身传感器。来自车辆本

15、身,通过整车网络接口获取诸如车速、轮速、档位等车辆本身的信息。综合考虑成本及性能,采用了激光雷达、毫米波雷达、摄像头、 GPS 和车联网设备等多种传感器来实现感知能力。认知大数据驾驶员认知靠大脑,无人驾驶汽车的“大脑”则是计算机。无人车里的计算机与我们常用的台式机、笔记本略有不同,因为车辆在行驶的时候会遇到颠簸、震动、粉尘甚至高温的情况, 一般计算机无法长时间运行在这些环境中。所以无人车一般选用工业环境下的计算机工控机。 工控机上运行着操作系统,操作系统中运行着无人驾驶软件。操作系统之上是支撑模块(这里模块指的是计算机程序) ,对上层软件模块提供基础服务。支撑块包括:虚拟交换模块,用于模块间通

16、信;日志管理模块,用于日志记录、检索以及回放;进程监控模块,负责监视整个系统的运行状态,如果某个模块运行不正常则提示操作人员并自动采取相应措施;交互调试模块,负责开发人员与无人驾驶系统交互。操控驾驶员操控汽车靠四肢,无人驾驶汽车靠什么呢?靠的是线控执行器。由于当前车辆是面向人类驾驶设计的,方向盘、油门、刹车、档位都是由人工操控。无人驾驶则需要这些机构能够由程序控制, 这就需要对传统汽车加以线控改造甚至重新设计。 方向盘线控的改造, 早期一般在转向柱加装可控电机, 现在一般利用较为成熟的转向助力零部件实现; 油门与制动线控的改造, 早期一般使用钢丝牵引车内踏板, 但控制精度不高, 现在一般直接使

17、用车内总线协议向整车控制器发送控制指令; 档位线控的改造, 早期一般靠步进电机实现, 现在同样向整车控制器发送指令实现档位控制。目前,随着电动车的出现与发展,很多线控功能在设计之初就被考虑其中。大数据5. 人工知能在智能医疗领域的应用随着社会进步和人们健康意识的觉醒, 人口老龄化问题的不断加剧, 人们对于提升医疗技术、延长人类寿命、增强健康的需求也更加急迫。而实践中却存在着医疗资源分配不均, 药物研制周期长、 费用高,以及医务人员培养成本过高等问题。 对于医疗进步的现实需求极大地刺激了以人工智能技术推动医疗产业变革升级浪潮的兴起。大数据(一)、智能骨骼ExoAtlet 公司生产了两款“智能外骨

18、骼”产品:ExoAtlet和 ExoAtletPro。前者适用于家庭,后者适用于医院。ExoAtlet适用于下半身瘫痪的患者,只要上肢功能基本完整,它能帮助患者完成基本的行走、 爬楼梯及一些特殊的训练动作。ExoAtletPro 在 ExoAtlet的基础上包括了更多功能,如测量脉搏、电刺激、设定既定的行走模式等。日本厚生劳动省已经正式将“机器人服”和“医疗用混合型辅助肢” 列为医疗器械在日本国内销售, 主要用于改善肌萎缩侧索硬化症、 肌肉萎缩症等疾病患者的步行机能。(二) 、智能药物研发美国硅谷公司 Atomwise 通过 IBM 超级计算机,在分子结构数据库中筛选治疗方法,评估出 820

19、万种药物研发的候选化合物。 2015 年, Atomwise 基于现有的候选药物, 应用人工智能算法, 在不到一天时间内就成功地寻找出能控制埃博拉病毒的两种候选药物。除挖掘化合物研制新药外,美国 Berg 生物医药公司通过研究生物数据研发新型药物。 “ Berg通过其开发的 InterrogativeBiology 人工智能平台,研究人体健康组织, 探究人体分子和细胞自身防御组织以及发病原理机制,利用人工智能和大数据来推算人体自身分子潜在的药物化合物。 这种利用人体自身的分子来医治类似于糖尿病和癌症等疑难杂症, 要比研究新药的时间成本与资金少一半。”(三) 、智能诊疗国外最早将人工智能应用于医

20、疗诊断的是MYCIN专家系统。 我国研制基于人工智能的专家系统始于上世纪70 年代末,但是发展很快。早期的有北京中医学院研制成关幼波肝炎医疗专家系统,它是模拟著名老中医关幼波大夫对肝病诊治的程序。上世纪80 年代初,福建中医学院与福建计算机中心研制的林如高骨伤计算机诊疗系统。其他如厦门大学、重庆大学、河南医科大学、长春大学等高等院校和其他研究机构开发了基于人工智能的医学计算机专家系统,并成功应用于临床。大数据在智能诊疗的应用中, IBMWatson 是目前最成熟的案例。 IBMWatson 可以在 17秒内阅读 3469 本医学专著、248000 篇论文、69 种治疗方案、61540 次试验数据、106000 份临床报告。 2012 年 Watson 通过了美国职业医师资格考试,并部署在美国多家医院

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论