![湘教版数学九年级下册导学案:12二次函数y=ax2的图象与性质(无答案)_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-11/23/650853aa-379b-45d4-81f7-e5ed378d141d/650853aa-379b-45d4-81f7-e5ed378d141d1.gif)
![湘教版数学九年级下册导学案:12二次函数y=ax2的图象与性质(无答案)_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-11/23/650853aa-379b-45d4-81f7-e5ed378d141d/650853aa-379b-45d4-81f7-e5ed378d141d2.gif)
![湘教版数学九年级下册导学案:12二次函数y=ax2的图象与性质(无答案)_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-11/23/650853aa-379b-45d4-81f7-e5ed378d141d/650853aa-379b-45d4-81f7-e5ed378d141d3.gif)
![湘教版数学九年级下册导学案:12二次函数y=ax2的图象与性质(无答案)_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-11/23/650853aa-379b-45d4-81f7-e5ed378d141d/650853aa-379b-45d4-81f7-e5ed378d141d4.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二次函数yax2的图象与性质一、学习目标:1知道二次函数的图象是一条抛物线;2会画二次函数yax2的图象;3掌握二次函数yax2的性质,并会灵活应用二、阅读课本:三、探索新知:画二次函数yx2的图象【提示:画图象的一般步骤:列表(取几组x、y的对应值;描点(表中x、y的数值在坐标平面中描点(x,y);连线(用平滑曲线)】列表:x3210123yx2描点,并连线由图象可得二次函数yx2的性质:1二次函数yx2是一条曲线,把这条曲线叫做_2二次函数yx2中,二次函数a_,抛物线yx2的图象开口_3自变量x的取值范围是_4观察图象,当两点的横坐标互为相反数时,函数y值相等,所描出的各对应点关于_对称
2、,从而图象关于_对称5抛物线yx2与它的对称轴的交点( , )叫做抛物线yx2的_ 因此,抛物线与对称轴的交点叫做抛物线的_6抛物线yx2有_点(填“最高”或“最低”) 四、例题分析例1 在同一直角坐标系中,画出函数yx2,yx2,y2x2的图象解:列表并填:x432101234yx2yx2的图象刚画过,再把它画出来x21.510.500.511.52y2x2归纳:抛物线yx2,yx2,y2x2的二次项系数a_0;顶点都是_; 对称轴是_;顶点是抛物线的最_点(填“高”或“低”) 例2 请在例1的直角坐标系中画出函数yx2,yx2, y2x2的图象列表:x3210123yx2x43210123
3、4y=x2x432101234y2x2归纳:抛物线yx2,yx2, y2x2的二次项系数a_0,顶点都是_, 对称轴是_,顶点是抛物线的最_点(填“高”或“低”) 五、理一理1抛物线yax2的性质图象(草图)开口方向顶点对称轴有最高或最低点最值a0当x_时,y有最_值,是_a0当x_时,y有最_值,是_2抛物线yx2与yx2关于_对称,因此,抛物线yax2与yax2关于_ 对称,开口大小_3当a0时,a越大,抛物线的开口越_; 当a0时,a 越大,抛物线的开口越_; 因此,a 越大,抛物线的开口越_,反之,a 越小,抛物线的开口越_六、课堂训练1填表:开口方向顶点对称轴有最高或最低点最值yx2当x_时,y有最_值,是_y8x22若二次函数yax2的图象过点(1,2),则a的值是_3二次函数y(m1)x2的图象开口向下,则m_4如图, yax2 ybx2 ycx2 ydx2 比较a、b、c、d的大小,用“”连接 _七、目标检测1函数yx2的图象开口向_,顶点是_,对称轴是_, 当x_时,有最_值是_2二次函数ymx有最低点,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国宝马款休闲车行业投资前景及策略咨询研究报告
- 2025年度个人信用贷款合同延期还款协议书
- 2025年度海上石油钻井平台运输服务合同
- 2025年度专业月嫂服务与孕期护理合同
- 2025年度海产品加盟店食品安全管理合同
- 2025年度园林绿化苗木出口与进口合同范本
- 2025年化妆品品牌授权区域代理合同范本
- 2025年度护坡工程劳务用工及劳动保护合同范本
- 2025年度知识产权侵权纠纷调解服务合同
- 2025年度澳门龙湖地产商业物业租赁管理服务合同范本
- JTG 3362-2018公路钢筋混凝土及预应力混凝土桥涵设计规范
- 八年级下册历史思维导图
- 电动汽车用驱动电机系统-编制说明
- 江苏卷2024年高三3月份模拟考试化学试题含解析
- (正式版)JTT 1497-2024 公路桥梁塔柱施工平台及通道安全技术要求
- 医疗器械物价收费申请流程
- 招聘专员转正述职报告
- “一带一路”背景下的西安市文化旅游外宣翻译研究-基于生态翻译学理论
- 2024年江苏省昆山市六校中考联考(一模)化学试题
- 大学生文学常识知识竞赛考试题库500题(含答案)
- 国家电网智能化规划总报告
评论
0/150
提交评论