版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上同角三角函数基本关系【学习目标】1.借助单位圆,理解同角三角函数的基本关系式: ,掌握已知一个角的三角函数值求其他三角函数值的方法;2会运用同角三角函数之间的关系求三角函数值、化简三角式或证明三角恒等式。【要点梳理】要点一:同角三角函数的基本关系式(1)平方关系:(2)商数关系:(3)倒数关系:,要点诠释:(1)这里“同角”有两层含义,一是“角相同”,二是对“任意”一个角(使得函数有意义的前提下)关系式都成立;(2)是的简写;(3)在应用平方关系时,常用到平方根,算术平方根和绝对值的概念,应注意“”的选取。要点二:同角三角函数基本关系式的变形1平方关系式的变形:,2商
2、数关系式的变形。【典型例题】类型一:已知某个三角函数值求其余的三角函数值例1已知tan=2,求sin,cos的值。【思路点拨】先利用,求出sin=2cos,然后结合sin2+cos2=1,求出sin,cos。【解析】 解法一:tan=2,sin=2cos。 又sin2+cos2=1, 由消去sin得(2cos)2+cos2=1,即。当为第二象限角时,代入得。当为第四象限角时,代入得。解法二:tan=20,为第二或第四象限角。又由,平方得。,即。当为第二象限角时,。当为第四象限角时,。【总结升华】解答此类题目的关键在于充分借助已知角的三角函数值,缩小角的范围。在解答过程中如果角所在象限已知,则另
3、两个三角函数值结果唯一;若角所在象限不确定,则应分类讨论,有两种结果,需特别注意:若已知三角函数值以字母a给出,应就所在象限讨论。举一反三:【变式1】已知是的一个内角,且,求【思路点拨】根据可得的范围:再结合同角三角函数的关系式求解.【解析】为钝角,由平方整理得例2已知cos=m(1m1),求sin的值。【解析】(1)当m=0时,角的终边在y轴上,当角的终边在y轴的正半轴上时,sin=1;当角的终边在y轴的负半轴上时,sin=1。(2)当m=±1时,角的终边在x轴上,此时,sin=0。(3)当|m|1且m0时,sin2=1cos2=1m2,当角为第一象限角或第二象限角时,当角为第三象
4、限角或第四象限角时,。【总结升华】 当角的范围不确定时,要对角的范围进行讨论,切记不要遗漏终边落在坐标轴上的情况。类型二:利用同角关系求值例3已知:求:(1)的值;(2)的值;(3)的值;(4)及的值【思路点拨】同角三角函数基本关系是反映了各种三角函数之间的内在联系,为三角函数式的恒等变形提供了工具与方法。【答案】(1)(2)(3)0(4)或【解析】(1)由已知 (2)(3)(4)由,解得或【总结升华】本题给出了及三者之间的关系,三者知一求二,在求解的过程中关键是利用了这个隐含条件。举一反三:【变式1】已知,求下列各式的值:(1);(2)sin3+cos3。【解析】 因为,所以,所以。(1)
5、(2)。【总结升华】 对于已知sin±cos=m型的问题,常有两种解法:一是两边平方,得±2sincos=m21,联立以上两个式子解出sin,cos的值,从而使问题得以解决;二是对所求式子进行变形,化为sin±cos,sin·cos的形式代入求解,解题时注意正、负号的讨论与确定。例4已知tan=3,求下列各式的值。(1);(2);(3)。【思路点拨】由已知可以求出,进而代入得解,但过程繁琐。在关于“齐次”式中可以使用“弦化切”,转化成关于tan的式子,然后利用已知求解.【解析】(1)原式的分子分母同除以cos(cos0)得,原式。(2)原式的分子分母同除
6、以cos2(cos20)得,原式。(3)用“1”来代换,原式。【总结升华】 已知tan的值,求关于sin、cos的齐次式的值问题如(1)、(2)题,cos0,所以可用cosn(nN*)除之,将被求式转化为关于tan的表示式,可整体代入tan=m的值,从而完成被求式的求值;在(3)题中,求形如a sin2+b sincos+c cos2的值,注意将分母的1化为1=sin2+cos2代入,转化为关于tan的表达式后再求值。举一反三:【变式1】(1)已知tan=3,求sin23sincos+1的值;(2)已知,求的值。【解析】(1)tan=3,1=sin2+cos2,原式 。(2)由,得,解得:。类
7、型三:利用同角关系化简三角函数式例5化简:。【解析】 解法一:原式 。解法二:原式 。解法三:原式 。【总结升华】以上三种解法虽然思路不同,但是主要都是应用公式sin2+cos2=1,解法二和解法三都是顺用公式,而解法一则是逆用公式,三种解法中,解法一最为简单。这里,所谓逆用公式sin2+cos2=1,实质上就是“1”的一种三角代换:“1=sin2+cos2”,1的三角代换在三角函数式的恒等变形过程中有着广泛的应用。举一反三:【变式1】化简(1); (2);(3); (4)【答案】(1)1(2)(3)略(4)略【解析】(1)原式=(2)原式=(3)原式=(4)原式= = =,类型四:利用同角关系证明三角恒等式例6求证:。【思路点拨】利用同角三角函数关系式对式子的左边或右边进行化简,使之与式子的另一边相同。【解析】 证法一:右边 =左边。证法二:左边,右边,所以左边=右边,原等式成立。证法三:左边,右边,所以左边=右边,原等式成立。【总结升华】 本题主要考查三角恒等式的证明方法。就一般情况而言,证明三角恒等式时,可以从左边推到右边,也可以从右边推到左边,本着化繁就简的原则,即从较繁的一边推向较简的一边;还可以将左、右两边同时推向一个中间结果;有时候改证其等价命题更为方便。但是,不管采取哪一种方式,证明时都要“盯住目标,据果变形”。化简证明过程中常用的技巧有:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论