![2022年《定积分的简单应用》参考教案_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-11/22/28ea0029-ee38-4b2d-ac78-05fa0feb7325/28ea0029-ee38-4b2d-ac78-05fa0feb73251.gif)
![2022年《定积分的简单应用》参考教案_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-11/22/28ea0029-ee38-4b2d-ac78-05fa0feb7325/28ea0029-ee38-4b2d-ac78-05fa0feb73252.gif)
![2022年《定积分的简单应用》参考教案_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-11/22/28ea0029-ee38-4b2d-ac78-05fa0feb7325/28ea0029-ee38-4b2d-ac78-05fa0feb73253.gif)
![2022年《定积分的简单应用》参考教案_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-11/22/28ea0029-ee38-4b2d-ac78-05fa0feb7325/28ea0029-ee38-4b2d-ac78-05fa0feb73254.gif)
![2022年《定积分的简单应用》参考教案_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-11/22/28ea0029-ee38-4b2d-ac78-05fa0feb7325/28ea0029-ee38-4b2d-ac78-05fa0feb73255.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学习必备欢迎下载定积分的简单应用教学目标:1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法;2、 让学生深刻理解定积分的几何意义以及微积分的基本定理;3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法,以及利用定积分求一些简单的旋转体的体积;4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。教学重点:几种曲边梯形面积的求法。教学难点:定积分求体积以及在物理中应用。教学过程:一、问题情境1、求曲边梯形的思想方法是什么?2、定积分的几何意义是什么?3、微积分基本定理是什么?二、数学应用(一)利用定积分求平面图形的面积例 1、求曲线,sin320 x
2、xy与直线,320 xxx轴所围成的图形面积。答案:2332320oxxdxs|cossin变式引申:1、求直线32xy与抛物线2xy所围成的图形面积。答案:33233323132231| )xxxdxxxs(2、求由抛物线342xxy及其在点 m (0,3)和 n(3,0)处的两条切线所围成的图形的面积。略解:42xy/,切线方程分别为34xy、62xy,则所求图形的面积为x y o y=x2+4x-3精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 1 页,共 5 页 - - - - - - - - -精品学习资料 可选择p d f - - - -
3、 - - - - - - - - - - 第 1 页,共 5 页 - - - - - - - - -学习必备欢迎下载493462343422303232dxxxxdxxxxs)()()()(3、求曲线xy2log与曲线)(logxy42以及x轴所围成的图形面积。略解:所求图形的面积为dydyyfygsy1010224)()()(【eeyy210224224log|)log(4、在曲线)0(2xxy上的某点 a处作一切线使之与曲线以及x轴所围成的面积为121. 试求:切点 a的坐标以及切线方程 . 略解:如图由题可设切点坐标为),200 xx(,则切线方程为2002xxxy,切线与x轴的交点坐标
4、为),(020 x,则由题可知有1211223022002202000 xdxxxxxdxxsxxx)(10 x,所以切点坐标与切线方程分别为12),1 , 1(axy总结:1、定积分的几何意义是:axxfyba与直线上的曲线在区间)(,、xbx以及轴所围成的图形的面积的代数和, 即轴下方轴上方xxbassdxxf)(. 因此求一些曲边图形的面积要可以利用定积分的几何意义以及微积分基本定理,但要特别注意图形面积与定积分不一定相等,如函数2,sinxxy的图像与x轴围成的图形的面积为4, 而其定积分为 0. 2、求曲边梯形面积的方法与步骤:(1) 画图,并将图形分割为若干个曲边梯形;(2) 对每
5、个曲边梯形确定其存在的范围,从而确定积分的上、下限;(3) 确定被积函数;(4) 求出各曲边梯形的面积和,即各积分的绝对值的和。3、几种常见的曲边梯形面积的计算方法:(1)x型区域:由一条曲线)其中0)()(xfxfy与直线)(,babxax以及x轴所围成的曲边梯形的面积:badxxfs)((如图( 1) ) ;由一条曲线)其中0)()(xfxfy与直线)(,babxax以及x轴所围成的曲边x x o y=x2a b c 精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 2 页,共 5 页 - - - - - - - - -精品学习资料 可选择p d
6、f - - - - - - - - - - - - - - 第 2 页,共 5 页 - - - - - - - - -学习必备欢迎下载梯形的面积:babadxxfdxxfs)()((如图( 2) ) ;由两条曲线)其中,)()()()(xgxfxgyxfy与直线)(,babxax所围成的曲边梯形的面积:badxxgxfs| )()(|(如图( 3) ) ;图(1)图(2)图(3)(2)y型区域:由一条曲线)其中0 xxfy)(与直线)(,babyay以及y轴所围成的曲边梯形的面积 , 可由)(xfy得)(yhx,然后利用badyyhs)(求出(如图( 4) ) ;由一条曲线)其中0 xxfy)
7、(与直线)(,babyay以及y轴所围成的曲边梯形的面积,可由)(xfy先求出)( yhx, 然后利用babadyyhdyyhs)()(求出(如图(5) ) ;由两条曲线)()(xgyxfy,与直线)(,babyay所围成的曲边梯形的面积,可由)()(xgyxfy,先分别求出)( yhx1,)(yhx2,然后利用badyyhyhs|)()(|21求出(如图( 6) ) ;图(4)图(5)图(6)(二) 、定积分求旋转体体积例 2:求由曲线142xxy,所围成的图形绕x轴旋转所得旋转体的体积。分析: (1)分割:将旋转体沿x轴方向将区间 0,1 进行n等分; (2)对区间nini,1上y )(x
8、fy)(xgya b x y )(xfya b x y )(xfya b x y )(xfy)(xgya b x y )(xfya b x y )(xfya b x 精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 3 页,共 5 页 - - - - - - - - -精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 3 页,共 5 页 - - - - - - - - -学习必备欢迎下载的柱体以区间右端点对应的函数值的平方数2)(nif作为底面圆半径的平方, 以nx1作为圆柱的高,以此圆柱体积近似代替曲边圆柱的
9、体积,即xnifvi2)(; (3)求和niinixnifv121)(; (4)逼近:当分割无限变细时,即x趋近于 0 时,根据定积分的定义其极限即为旋转体的体积xdxv104。略解:2410dxxv(三) 、定积分在物理中应用(1) 求变速直线运动的路程例 3、a、b两站相距 7.2km,一辆电车从 a站 b开往站,电车开出ts 后到达途中 c点,这一段的速度为 1.2t(m/s),到 c点的速度为 24m/s,从 c点到 b点前的 d点以等速行驶,从d点开始刹车,经 ts 后,速度为( 24-1.2t )m/s,在 b点恰好停车,试求(1)a、c间的距离;(2)b、d间的距离; (3)电车
10、从 a站到 b站所需的时间。分析:作变速直线运动的物体所经过的路程s, 等于其速度函数v=v(t)(v(t)0)在时间区间a,b 上的定积分 , 即badttvs)(略解: (1)设 a到 c的时间为 t1则 1.2t=24, t1=20(s), 则 ac 20020022406021)(|.mttdt(2)设 d到 b的时间为 t21则 24-1.2t2=0, t21=20(s), 则 db 2002002240602124)(|.mtdtt)(3) cd=7200-2 240=6720(m),则从 c到 d的时间为 280(s), 则所求时间为 20+280+20=320(s)(2) 、变
11、力沿直线所作的功问题:物体在变力 f(x)的作用下做直线运动, 并且物体沿着与 f(x) 相同的方向从 x=a 点移动到 x= b 点,则变力 f(x) 所做的功为 :badxxfw)(例 3:如果 1n能拉长弹簧 1cm ,为了将弹簧拉长6cm ,需做功( a ) a 0.18j b 0.26j c 0.12j d 0.28j 略解:设kxf,则由题可得010.k,所以做功就是求定积分18001060.xdx。五:回顾与小结:精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 4 页,共 5 页 - - - - - - - - -精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 4 页,共 5 页 - - - - - - - - -学习必备欢迎下载本节课主要学习了利用定积分求一些曲边图形的面积与体积,即定积分在几何中应用,以及定积分在物理学中的应用,要掌握几种常见图形面积的求法,并且要注意定积分的几何意义,不能等同于图形的面积,要注意微
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 政务(含公共服务)服务平台项目建设方案X
- 未来教育领域中如何利用移动支付进行教育资源的优化配置和共享研究
- 环境保护教育推广与实践
- 国庆节团队旅行活动方案
- 环境艺术设计中的视觉体验与审美需求
- 生态环保理念在办公空间的设计实践
- 环保材料在环境艺术设计中的应用前景
- 生活用纸的创新设计与实践案例分享
- 《2 颜色填充和橡皮擦工具》(说课稿)-2023-2024学年五年级下册综合实践活动吉美版
- 2023八年级物理上册 第四章 光现象第5节 光的色散说课稿 (新版)新人教版
- 工业企业电源快速切换装置设计配置导则
- 某有限公司双螺纹偏转型防松防盗螺母商业计划书
- 年产3万吨喷气纺、3万吨气流纺生产线项目节能评估报告
- 外研版九年级英语上册单元测试题全套带答案
- 2023年云南省贵金属新材料控股集团有限公司招聘笔试题库及答案解析
- GB/T 1094.1-2013电力变压器第1部分:总则
- 2023年益阳医学高等专科学校单招综合素质考试笔试题库及答案解析
- 胸外科诊疗指南和操作规范
- 电网基本知识
- 民法原理与实务课程教学大纲
- 钢筋混凝土框架结构工程监理的质量控制
评论
0/150
提交评论