版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章2充分条件与必要条件2.3充要条件学习目标1.理解充要条件的意义.2.会判断、证明充要条件.3.通过学习,弄清对条件的判断应该归结为对命题真假的判断.题型探究问题导学内容索引当堂训练问题导学知识点一充要条件的概念思考1命题“若整数a是6的倍数,则整数a是2和3的倍数”中条件和结论有什么关系?它的逆命题成立吗?只要满足条件,必有结论成立,它的逆命题成立.答案思考2若设p:整数a是6的倍数,q:整数a是2和3的倍数,则p是q的什么条件?q是p的什么条件?因为pq且qp,所以p是q的充分条件也是必要条件;同理,q是p的充分条件,也是必要条件.答案梳理梳理一般地,如果既有pq,又有qp,就记作
2、.此时,我们说,p是q的 ,简称 .pq充分必要条件充要条件知识点二充要条件的判断1.由原命题与逆命题的真假情况判断充分条件、必要条件和充要条件若原命题为“若p,则q”,则逆命题为“若q,则p”,那么p与q有以下四种情形:原命题逆命题条件p与结论q的关系结论真假_p是q成立的充分不必要条件假真_p是q成立的必要不充分条件真真_p是q成立的充要条件pq,但qpqp,但pqpq,qp,即pq假假_p是q成立的既不充分又不必要条件由上表可得充要条件的判断方法:原命题和逆命题均为真命题,p才是q的充要条件.pq,qp2.从集合的角度判断充分条件、必要条件和充要条件若ab,则p是q的充分条件,若ab,则
3、p是q的充分不必要条件若ba,则p是q的必要条件,若ba,则p是q的必要不充分条件若ab,则p,q互为充要条件若ab且ba,则p既不是q的充分条件,也不是q的必要条件其中p:ax|p(x)成立,q:bx|q(x)成立.题型探究例例1下列各题中,p是q的什么条件?(指充分不必要、必要不充分、充要、既不充分又不必要条件)(1)p:四边形的对角线互相平分,q:四边形是矩形;解答类型一充要条件的判断四边形的对角线互相平分四边形是矩形,四边形是矩形四边形的对角线互相平分,p是q的必要不充分条件.(2)p:a2b20,q:ab0;解答a2b20ab0ab0,ab0a2b20,p是q的充分不必要条件.解答(
4、4)p:sin sin ,q:.解答由sin sin 不能推出,反过来由也不能推出sin sin ,p既不是q的充分条件,也不是q的必要条件.则p是q的既不充分又不必要条件.充要条件的常用判断方法(1)命题判断法设“若p,则q”为原命题,那么:原命题为真,逆命题为假时,p是q的充分不必要条件;原命题为假,逆命题为真时,p是q的必要不充分条件;原命题与逆命题都为真时,p是q的充要条件;原命题与逆命题都为假时,p是q的既不充分又不必要条件.(2)集合法若p与q确定的集合分别是a,b,则当且仅当ab时,p是q的充要条件.反思与感悟 跟踪训练跟踪训练1(1)“x1”是“ (x2)0”的a.充要条件 b
5、.充分不必要条件c.必要不充分条件 d.既不充分又不必要条件答案解析12log由x1x23 (x2)0, (x2)0 x21x1,故“x1”是“ (x2)0”成立的充分不必要条件.故选b.12log12log12log (2)设x0,yr,则“xy”是“x|y|”的a.充要条件b.充分不必要条件c.必要不充分条件d.既不充分又不必要条件答案解析当x1,y2时,xy,但x|y|不成立;因为|y|y,所以若x|y|,则xy.所以xy是x|y|的必要不充分条件.命题角度命题角度1探求充要条件探求充要条件例例2求关于x的一元二次不等式ax2ax1a0对于一切实数x都成立的充要条件.类型二充要条件的探求
6、与证明解答充分性:当0a 时,判别式a24a(1a)5a24aa(5a4)0对一切实数x都成立.而当a0时,不等式ax2ax1a0化为10.显然当a0时,不等式ax2ax1a0对一切实数x都成立.必要性:因为ax2ax1a0对一切实数x都成立,故0a0对一切实数x都成立的充要条件.探求一个命题的充要条件,可以利用定义法进行探求,即分别证明“条件结论”和“结论条件”,也可以寻求结论的等价命题,还可以先寻求结论成立的必要条件,再证明它也是其充分条件.反思与感悟跟踪训练跟踪训练2设a、b、c为abc的三边,求方程x22axb20与x22cxb20有公共根的充要条件.解答先由题意求出条件:设是两方程的
7、公共根,显然0,则22ab20,22cb20,得222(ac)0,(ac).代入,得(ac)22a(ac)b20,即a2b2c2,以上求条件的过程就是必要性的证明过程.再证明充分性:a2b2c2,方程x22axb20,可化为x22axa2c20,它的解为x1(ac),x2ca.同理方程x22cxb20可化为x22cxa2c20,它的解为x3(ac),x4ac.x1x3,方程x22axb20与x22cxb20有公共根.综上所述,方程x22axb20与x22cxb20有公共根的充要条件是a2b2c2.命题角度命题角度2充要条件的证明充要条件的证明例例3求证:一元二次方程ax2bxc0有一正根和一负
8、根的充要条件是ac0.证明充分性:ac0,方程一定有两个不等实根,方程的两根异号,即方程ax2bxc0有一正根和一负根.必要性:方程ax2bxc0有一正根和一负根,设两实根为x1,x2,则由根与系数的关系得x1x2 0,即ac0.综上可知,一元二次方程ax2bxc0有一正根和一负根的充要条件是ac0.一般地,证明“p成立的充要条件为q”,在证充分性时,应以q为“已知条件”,p是要证明的“结论”,即qp;证明必要性时,则是以p为“已知条件”,q是要证明的“结论”,即pq.反思与感悟跟踪训练跟踪训练3求证:一次函数f(x)kxb(k0)是奇函数的充要条件是b0.证明充分性:如果b0,那么f(x)k
9、x,因为f(x)k(x)kx,所以f(x)f(x),所以f(x)为奇函数.必要性:因为f(x)kxb(k0)是奇函数,所以f(x)f(x)对任意x均成立,即k(x)b(kxb),所以b0.综上,一次函数f(x)kxb(k0)是奇函数的充要条件是b0.类型三充分条件与必要条件的应用例例4已知p:3xm0,若p是q的一个充分不必要条件,求m的取值范围.解答由x22x30得,x3.q:bx|x3.m3,即m的取值范围是3,).首先应把p与q之间的关系转化为p,q确定的集合之间的包含关系,然后,构建满足条件的不等式(组)求解.同时要注意命题的等价性的应用.反思与感悟 q:x2,由题意知,x|xkx|x
10、2,则k2,k的取值范围是(2,).跟踪训练跟踪训练4已知p:xk,q: 2 017”是“x22 016”的a.充分不必要条件b.必要不充分条件c.充要条件d.既不充分又不必要条件答案2.“ab”是“a|b|”的a.充分不必要条件b.必要不充分条件c.充分必要条件d.既不充分又不必要条件由a|b|ab,而ab推不出a|b|.答案解析23451234513.已知实系数一元二次方程ax2bxc0(a0),下列结论中正确的是b24ac0是这个方程有实根的充分条件;b24ac0是这个方程有实根的必要条件;b24ac0是这个方程有实根的充要条件;b24ac0是这个方程有实根的充分条件.a.b.c.d.b24ac0是实系数一元二次方程ax2bxc0(a0)有实根的充要条件,利用该结论可知正确,由于b24ac0时,方程有相等实根,故是正确的.答案解析234514.直线xym0与圆(x1)2(y1)22相切的充要条件是_.答案解析m4或m0解得m4或m0.5.已知p:3xm0,若p是q的一个充分不必要条件,求m的取值范围.解答23451由x22x30,得x3,q:bx|x3.pq而qp,ab,m3,即m的取值范围是3,).规律与方法1.充要条件的判断有三种方法:定义法、命题等价法、集合法.2.充要条件的证明与探求(1)充要条件的证明是分充分性和必要性两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校工作总结和工作计划(6篇)
- 读书活动的心得体会
- 教学工作心得体会总结8篇
- 新教材高考地理二轮复习综合题专项训练七简易绘图类含答案
- 四川省泸州市江阳区泸州老窖天府中学2024-2025学年七年级上学期期中地理试题(含答案)
- 河南省安阳市林州市湘豫名校联考2024-2025学年高三上学期11月一轮诊断考试 数学(含答案)
- 2015-2024年高考数学总复习:数列小题综合(学生卷)
- 个人信用贷款合同模板
- 户外照明产品购销合同模板
- 2024年公司运输司机聘用合同
- DB42∕T 2241-2024 鱼腥草生产技术规程
- 2024至2030年中国内燃机制造行业发展形势及未来趋势展望研究报告
- 生态环境执法大练兵比武竞赛理论备赛试题库(浓缩500题)
- 普法课件:统计法培训
- 《我和鸟类做朋友》(教学设计)-2023-2024学年五年级上册综合实践活动粤教版
- 关于合同违约扣款的函件
- NB-T33004-2013电动汽车充换电设施工程施工和竣工验收规范
- 2024版劳动合同合同范本
- 古希腊文明智慧树知到期末考试答案章节答案2024年复旦大学
- 小学数学一年级上册数学试卷可直接打印
- DZ∕T 0258-2014 多目标区域地球化学调查规范(1:250000)(正式版)
评论
0/150
提交评论