版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基本操作-5/(4.8+5.32)2area=pi*2.52x1=1+1/2+1/3+1/4+1/5+1/6exp(acos(0.3)a=1 2 3;4 5 6;7 8 9 a=1:3,4:6,7:9a1=6: -1:1a=eye(4) a1=eye(2,3) b=zeros(2,10) c=ones(2,10) c1=8*ones(3,5)d=zeros(3,2,2);r1=rand(2, 3)r2=5-10*rand(2, 3)r4=2*randn(2,3)+3arr1=1.1 -2.2 3.3 -4.4 5.5arr1(3) arr1(1 4) arr1(1:2:5)arr2=1 2 3
2、; -2 -3 -4;3 4 5arr2(1,:)arr2(:,1:2:3)arr3=1 2 3 4 5 6 7 8arr3(5:end) arr3(end)绘图x=0:1:10; y=x.2-10*x+15; plot(x,y) x=0:pi/20:2*pi y1=sin(x);y2=cos(x); plot(x,y1,'b-'); hold on; plot(x,y2,k-); legend (sin x,cos x); x=0:pi/20:2*pi; y=sin(x);figure(1) plot(x,y, 'r-') grid on以二元函数图 z =
3、xexp(-x2-y2) 为例讲解基本操作,首先需要利用meshgrid函数生成X-Y平面的网格数据,如下所示:xa = -2:0.2:2;ya = xa;x,y = meshgrid(xa,ya);z = x.*exp(-x.2 - y.2);mesh(x,y,z);建立M文件function fenshu( grade )if grade > 95.0 disp('The grade is A.');else if grade > 86.0 disp('The grade is B.'); else if grade > 76.0 disp
4、('The grade is C.'); else if grade > 66.0 disp('The grade is D.'); else disp('The grade is F.'); end end end end endfunction y=func(x) if abs(x)<1 y=sqrt(1-x2); else y=x2-1; endfunction summ( n)i = 1; sum = 0; while ( i <= n ) sum = sum+i; i = i+1; end str = '
5、88;ÆËã½á¹ûΪ£º',num2str(sum); disp(str) end求极限syms xlimit(1+x)(1/x),x,0,'right')求导数syms x;f=(sin(x)/x);diff(f)diff(log(sin(x)求积分syms x;int(x2*log(x)syms x;int(abs(x-1),0,2)常微分方程求解dsolve('Dy+2*x*y=x*exp(-x2)','x')计算偏导数
6、x/(x2 + y2 + z2)(1/2)diff(x2+y2+z2)(1/2),x,2)重积分int(int(x*y,y,2*x,x2+1),x,0,1)级数syms n;symsum(1/2n,1,inf)Taylor展开式求y=exp(x)在x=0处的5阶Taylor展开式taylor(exp(x),0,6)矩阵求逆A=0 -6 -1; 6 2 -16; -5 20 -10det(A)inv(A)特征值、特征向量和特征多项式A=0 -6 -1; 6 2 -16; -5 20 -10; lambda=eig(A)v,d=eig(A)poly(A)多项式的根与计算p=1 0 -2 -5;r=
7、roots(p)p2=poly(r)y1=polyval(p,4)例子:x=-3:3'y=3.03,3.90,4.35,4.50,4.40,4.02,3.26'A=2*x, 2*y, ones(size(x); B=x.2+y.2;c=inv(A'*A)*A'*B;r=sqrt(c(3)+c(1)2+c(2)2)例子ezplot('-2/3*exp(-t)+5/3*exp(2*t)','-2/3*exp(-t)+2/3*exp(2*t)',0,1) grid on; axis(0, 12, 0, 5)密度函数和概率分布设x b(2
8、0,0.1),binopdf(2,20,0.1)分布函数设x N(1100,502) , y N(1150,802) ,则有normcdf(1000,1100,50)=0.0228,1-0.0228=0.9772 normcdf(1000,1150,80)=0.0304, 1-0.0304=0.9696统计量数字特征x=29.8 27.6 28.3mean(x)max(x)min(x)std(x) syms p k; Ex=symsum(k*p*(1-p)(k-1),k,1,inf)syms x y; f=x+y; Ex=int(int(x*y*f,y,0,1),0,1)参数估计例:对某型号的
9、20辆汽车记录其5L汽油的行驶里程(公里),观测数据如下:29.827.628.327.930.128.729.928.027.928.728.427.229.528.528.030.029.129.829.626.9设行驶里程服从正态分布,试用最大似然估计法求总体的均值和方差。x1=29.8 27.6 28.3 27.9 30.1 28.7 29.9 28.0 27.9 28.7;x2=28.4 27.2 29.5 28.5 28.0 30.0 29.1 29.8 29.6 26.9;x=x1 x2'p=mle('norm',x);muhatmle=p(1), sig
10、ma2hatmle=p(2)2m,s,mci,sci=normfit(x,0.5)假设检验例:下面列出的是某工厂随机选取的20只零部件的装配时间(分):9.8 10.4 10.6 9.6 9.7 9.9 10.9 11.1 9.6 10.210.3 9.6 9.9 11.2 10.6 9.8 10.5 10.1 10.5 9.7设装配时间总体服从正态分布,标准差为0.4,是否认定装配时间的均值在0.05的水平下不小于10。解 :在正态总体的方差已知时MATLAB均值检验程序:x1=9.8 10.4 10.6 9.6 9.7 9.9 10.9 11.1 9.6 10.2;x2=10.3 9.6
11、9.9 11.2 10.6 9.8 10.5 10.1 10.5 9.7;x=x1 x2'm=10;sigma=0.4;a=0.05;h,sig,muci=ztest(x,m,sigma,a,1)得到:h =1, sig =0.01267365933873, muci = 10.05287981908398 Inf% PPT 例2 一维正态密度与二维正态密度syms x y;s=1; t=2; mu1=0; mu2=0; sigma1=sqrt(s2); sigma2=sqrt(t2); x=-6:0.1:6;f1=1/sqrt(2*pi*sigma1)*exp(-(x-mu1).2/
12、(2*sigma12);f2=1/sqrt(2*pi*sigma2)*exp(-(x-mu2).2/(2*sigma22);plot(x,f1,'r-',x,f2,'k-.') rho=(1+s*t)/(sigma1*sigma2); f=1/(2*pi*sigma1*sigma2*sqrt(1-rho2)*exp(-1/(2*(1-rho2)*(x-mu1)2/sigma12-2*rho*(x-mu1)*(y-mu2)/(sigma1*sigma2)+(y-mu2)2/sigma22);ezsurf(f)% P34 例3.1.1p1=poisscdf(5,10
13、)p2=poisspdf(0,10)p1,p2%输出p1 =0.0671p2 =4.5400e-005ans =0.0671 0.0000 % P40 例3.2.1p3=poisspdf(9,12)% 输出p3 = 0.0874 % P40 例3.2.2p4=poisspdf(0,12)% 输出p4 = 6.1442e-006% P35-37(Th3.1.1) 解微分方程% 输入:syms p0 p1 p2 ;S=dsolve('Dp0=-lamda*p0','Dp1=-lamda*p1+lamda*p0','Dp2=-lamda*p2+lamda*p1
14、','p0(0) = 1','p1(0) = 0','p2(0) = 0');S.p0,S.p1,S.p2% 输出:ans =exp(-lamda*t), exp(-lamda*t)*t*lamda, 1/2*exp(-lamda*t)*t2*lamda2% P40 泊松过程仿真% simulate 10 timesclear;m=10; lamda=1; x=; for i=1:ms=exprnd(lamda,'seed',1);% seed是用来控制生成随机数的种子, 使得生成随机数的个数是一样的.x=x,exprnd
15、(lamda);t1=cumsum(x);endx',t1' %输出:ans = 0.6509 0.6509 2.4061 3.0570 0.1002 3.1572 0.1229 3.2800 0.8233 4.1033 0.2463 4.3496 1.9074 6.2570 0.4783 6.7353 1.3447 8.0800 0.8082 8.8882%输入:N=;for t=0:0.1:(t1(m)+1)if t<t1(1) N=N,0;elseif t<t1(2) N=N,1;elseif t<t1(3) N=N,2;elseif t<t1(4
16、) N=N,3;elseif t<t1(5) N=N,4;elseif t<t1(6) N=N,5;elseif t<t1(7) N=N,6;elseif t<t1(8) N=N,7;elseif t<t1(9) N=N,8; elseif t<t1(10) N=N,9;else N=N,10;endendplot(0:0.1:(t1(m)+1),N,'r-') %输出:% simulate 100 timesclear;m=100; lamda=1; x=; for i=1:ms= rand('seed');x=x,expr
17、nd(lamda);t1=cumsum(x);endx',t1' N=;for t=0:0.1:(t1(m)+1)if t<t1(1) N=N,0;endfor i=1:(m-1) if t>=t1(i) & t<t1(i+1) N=N,i; endendif t>t1(m) N=N,m;endendplot(0:0.1:(t1(m)+1),N,'r-') % 输出:% P48 非齐次泊松过程仿真% simulate 10 timesclear;m=10; lamda=1; x=; for i=1:ms=rand('see
18、d'); % exprnd(lamda,'seed',1); set seedsx=x,exprnd(lamda);t1=cumsum(x);endx',t1' N=; T=;for t=0:0.1:(t1(m)+1)T=T,t.3; % time is adjusted, cumulative intensity function is t3. if t<t1(1) N=N,0;endfor i=1:(m-1) if t>=t1(i) & t<t1(i+1) N=N,i; endend if t>t1(m) N=N,m;
19、 endendplot(T,N,'r-') % outputans = 0.4220 0.4220 3.3323 3.7543 0.1635 3.9178 0.0683 3.9861 0.3875 4.3736 0.2774 4.6510 0.2969 4.9479 0.9359 5.8838 0.4224 6.3062 1.7650 8.0712 10 times simulation 100 times simulation% P50 复合泊松过程仿真% simulate 100 timesclear;niter=100; % iterate numberlamda=1;
20、% arriving ratet=input('Input a time:','s')for i=1:niter rand('state',sum(clock); x=exprnd(lamda); % interval time t1=x; while t1<t x=x,exprnd(lamda); t1=sum(x); % arriving time end t1=cumsum(x); y=trnd(4,1,length(t1); % rand(1,length(t1); gamrnd(1,1/2,1,length(t1); frnd(2
21、,10,1,length(t1); t2=cumsum(y);endx',t1',y',t2' X=; m=length(t1);for t=0:0.1:(t1(m)+1) if t<t1(1) X=X,0; end for i=1:(m-1) if t>=t1(i) & t<t1(i+1) X=X,t2(i); end end if t>t1(m) X=X,t2(m); endendplot(0:0.1:(t1(m)+1),X,'r-') 跳跃度服从0,1均匀分布情形 跳跃度服从分布情形跳跃度服从t(10)分布情
22、形 % Simulate the probability that sales revenue falls in some interval. (e.g. example 3.3.6 in teaching material)clear; niter=1.0E4; % number of iterationslamda=6; % arriving rate (unit:minute)t=720; % 12 hours=720 minutesabove=repmat(0,1,niter); % set up storage for i=1:niter rand('state',s
23、um(clock); x=exprnd(lamda); % interval time n=1; while x<t x=x+exprnd(1/lamda); % arriving time if x>=t n=n;else n=n+1; end end z=binornd(200,0.5,1,n); % generate n sales y=sum(z); above(i)=sum(y>432000); end pro=mean(above)Output: pro =0.3192% Simulate the loss pro. For a Compound Poisson
24、processclear; niter=1.0E3; % number of iterationslamda=1; % arriving ratet=input('Input a time:','s') below=repmat(0,1,niter); % set up storage for i=1:niter rand('state',sum(clock); x=exprnd(lamda); % interval time n=1; while x<t x=x+exprnd(lamda); % arriving time if x>
25、;=t n=n;else n=n+1; end end r=normrnd(0.05/253,0.23/sqrt(253),1,n); % generate n random jumps y=log(1.0E6)+cumsum(r); minX=min(y); % minmum return over next n jumps below(i)=sum(minX<log(950000); end pro=mean(below)Output: t=50, pro=0.45% P75 (Example 5.1.5) 马氏链chushivec0=0 0 1 0 0 0 P=0,1/2,1/2,
26、0,0,0;1/2,0,1/2,0,0,0;1/4,1/4,0,1/4,1/4,0;0,0,1,0,0,0,;0,0,1/2,0,0,1/2;0,0,0,0,1,0jueduivec1=chushivec0*Pjueduivec2=chushivec0*(P2)% 计算 1 到 n 步后的分布chushivec0=0 0 1 0 0 0;P=0,1/2,1/2,0,0,0;1/2,0,1/2,0,0,0;1/4,1/4,0,1/4,1/4,0;0,0,1,0,0,0,;0,0,1/2,0,0,1/2;0,0,0,0,1,0;n=10t=1/6*ones(1 6);jueduivec=repma
27、t(t,n 1); for k=1:n jueduiveck=chushivec0*(Pk); jueduivec(k,1:6)=jueduiveckend% 比较相邻的两行n=70;jueduivecn=chushivec0*(Pn)n=71;jueduivecn=chushivec0*(Pn)% Replace the first distribution, Comparing two neighbour absolute-vectors once morechushivec0=1/6 1/6 1/6 1/6 1/6 1/6;P=0,1/2,1/2,0,0,0;1/2,0,1/2,0,0,
28、0;1/4,1/4,0,1/4,1/4,0;0,0,1,0,0,0,;0,0,1/2,0,0,1/2;0,0,0,0,1,0;n=70;jueduivecn=chushivec0*(Pn)n=71;jueduivecn=chushivec0*(Pn)% 赌博问题模拟(带吸收壁的随机游走:结束1次游走所花的时间及终止状态)a=5; p=1/2;m=0; while m<100 m=m+1; r=2*binornd(1,p)-1; if r=-1 a=a-1; else a=a+1; end if a=0|a=10 break; endendm a % 赌博问题模拟(带吸收壁的随机游走:结束
29、N次游走所花的平均时间及终止状态分布规律) % p=q=1/2 p=1/2;m1=0; m2=0; N=1000;t1=0;t2=0;for n=1:1:N m=0; a=5; while a>0 & a<10 m=m+1; r=2*binornd(1,p)-1; if r=-1 a=a-1; else a=a+1; endendif a=0 t1=t1+m; m1=m1+1;else t2=t2+m; m2=m2+1;endendfprintf('The average times of arriving 0 and 10 respectively are %d,
30、%d.n',t1/m1,t2/m2);fprintf('The frequencies of arriving 0 and 10 respectively are %d,%d.n',m1/N, m2/N); % verify: fprintf('The probability of arriving 0 and its approximate respectively are %d,%d.n', 5/10, m1/N); fprintf('The expectation of arriving 0 or 10 and its approximat
31、e respectively are %d,%d.n', 5*(10-5)/(2*p), (t1+t2)/N ); % p=qp=1/4;m1=0; m2=0; N=1000;t1=zeros(1,N);t2=zeros(1,N);for n=1:1:N m=0;a=5; while a>0 & a<15 m=m+1; r=2*binornd(1,p)-1; if r=-1 a=a-1; else a=a+1; endendif a=0 t1(1,n)=m; m1=m1+1;else t2(1,n)=m; m2=m2+1;endendfprintf('The
32、 average times of arriving 0 and 10 respectively are %d,%d.n',sum(t1,2)/m1,sum(t2,2)/m2);fprintf('The frequencies of arriving 0 and 10 respectively are %d,%d.n',m1/N, m2/N); % verify: fprintf('The probability of arriving 0 and its approximate respectively are %d,%d.n', (p10*(1-p)
33、5-p5*(1-p)10)/(p5*(p10-(1-p)10), m1/N); fprintf('The expectation of arriving 0 or 10 and its approximate respectively are %d,%d.n',5/(1-2*p)-10/(1-2*p)*(1-(1-p)5/p5)/(1-(1-p)10/p10), (sum(t1,2)+sum(t2,2)/N); %连续时间马尔可夫链 通过Kolmogorov微分方程求转移概率输入:clear;syms p00 p01 p10 p11 lamda mu; P=p00,p01;p1
34、0,p11;Q=-lamda,lamda;mu,-muP*Q输出:ans = -p00*lamda+p01*mu, p00*lamda-p01*mu -p10*lamda+p11*mu, p10*lamda-p11*mu输入:p00,p01,p10,p11=dsolve('Dp00=-p00*lamda+p01*mu','Dp01=p00*lamda-p01*mu','Dp10=-p10*lamda+p11*mu','Dp11=p10*lamda-p11*mu','p00(0)=1,p01(0)=0,p10(0)=0,p1
35、1(0)=1')输出:p00 =mu/(mu+lamda)+exp(-t*mu-t*lamda)*lamda/(mu+lamda)p01 =(lamda*mu/(mu+lamda)-exp(-t*mu-t*lamda)*lamda/(mu+lamda)*mu)/mup10 =mu/(mu+lamda)-exp(-t*mu-t*lamda)*mu/(mu+lamda)p11 =(lamda*mu/(mu+lamda)+exp(-t*mu-t*lamda)*mu2/(mu+lamda)/mu% BPATH1 Brownian path simulation: forend randn(
36、39;state',100) % set the state of randnT = 1; N = 500; dt = T/N;dW = zeros(1,N); % preallocate arrays .W = zeros(1,N); % for efficiency dW(1) = sqrt(dt)*randn; % first approximation outside the loop .W(1) = dW(1); % since W(0) = 0 is not allowedfor j = 2:N dW(j) = sqrt(dt)*randn; % general increment W(j) = W(j-1) + dW(j); end plot(0:dt:T,0,W,'r-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《会计基础习题集》高职全套教学课件
- 心理效应 课件
- 2024年1月福建省普通高中学业水平合格性考试化学试题(解析版)
- 第二单元 习作:多彩的生活(教学)-六年级语文上册单元作文能力提升(统编版)
- 西京学院《现代信号处理》2021-2022学年第一学期期末试卷
- 西京学院《企业战略与风险管理》2023-2024学年第一学期期末试卷
- 西京学院《基础护理学》2022-2023学年第一学期期末试卷
- 齐白石介绍课件
- 移动机器人原理与技术 课件 第3、4章 移动机器人的传感器、移动机器人定位
- 西华师范大学《地理课程与教学论》2021-2022学年第一学期期末试卷
- 我国跨文化传播研究的文献综述以中国跨文化传播研究为背景
- 《C语言程序设计》 课件 3.4switch语句
- 2023年-2024年小学数学教师《小学数学教学论》考试题库及答案
- 奶粉促销活动主持词
- 2024年中央金融工作会议精神心得体会1000字(8篇)
- 2024入团考试题库考试100题题库(含答案)
- 保安培训记录内容
- 公务快艇常规安全
- 案例l五项目三:电动天窗系统的检测与故障排除
- 项目技术方案评审
- JTS180-2-2011 运河通航标准
评论
0/150
提交评论