排列组合经典试题及答案_第1页
排列组合经典试题及答案_第2页
排列组合经典试题及答案_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、排列组合1(2002北京)5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为( )(a)480 种         (b)240种       (c)120种         (d)96种解:首先把5本书转化成4本书,然后分给4个人.第一步:从5本书中任意取出2本捆绑成一本书,有种方法;第二步:再把4本书分给4个学生,有种方法.由乘法原理,共有种方法,故

2、选b.【2004福建理】某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( )(a)(b)(c)(d)答案:b(2004桂、蒙、琼、陕、藏)将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( ) a. 12种b. 24种c. 36种d. 48种答案:a4(四川省巴蜀联盟2008届高三年级第二次联考)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有a30种b90种 c180种d270种答案:b5. (06年)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中

3、甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有 种 答案:6006.(重庆卷16)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点a、b、c、a1、b1、c1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答).答案:2167. (97全国)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有( )种(a) 150()147 (c)144 (d)141解:从10个点中任取4个噗有=210种取法,应剔除下面三类共面点:(1) 从四面体的每个面上的6个点中任取4个点必共面有=60种取

4、法;(2) 四面体的每条棱上3个点与对棱中点共面有6种取法;(3) 6个中点连线有3对平行线段共面,故从这6个点中取4个共面中取4个共面点有3种取法。故符合条件取法共210-60-6-3=141种。选(d).dbca8.(2008全国一12)如图,一环形花坛分成四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )a96b84c60d48答案:b9. (2003全国高考题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答)误解:先着色第一区域,有4种方法,剩下3

5、种颜色涂四个区域,即有一种颜色涂相对的两块区域,有种,由乘法原理共有:种.错因分析:据报导,在高考中有很多考生填了48种.这主要是没有看清题设“有4种颜色可供选择”,不一定需要4种颜色全部使用,用3种也可以完成任务.正解:当使用四种颜色时,由前面的误解知有48种着色方法;当仅使用三种颜色时:从4种颜色中选取3种有种方法,先着色第一区域,有3种方法,剩下2种颜色涂四个区域,只能是一种颜色涂第2、4区域,另一种颜色涂第3、5区域,有2种着色方法,由乘法原理有种.综上共有:种.11(1991)设有编号1、2、3、4、5的五个球和编号1、2、3、4、5的五个盒子,现将这五个球投放入这五个盒内,要求每个

6、盒内投放一个球,并且恰好有两个球的编号与盒子的编号相同,则这样的投放方法的总数为( )(a)20(b)30(c)60(d)120答案:a12(2006天津理)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有()a10种b20种c36种 d52种13(2004.湖北理)将标号为1,2,10的10个球放入标号为1,2,10的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有 240 种.(以数字作答)14. (北京市宣武区2008年高三综合练习一)编号为1、2、3、4、5的五个人分别去

7、坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( ) a 10种 b 20种 c 30种 d 60种答案:b15(安徽卷12)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是 ( c )a bcd 16.(1989)两排座位,第一排有3个座位,第二排有5个座位,若8名学生入座(每人一个座位),则不同坐法的种数( )答案: d(a) (b) (c) (d)20.(2009天津卷理)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有 个(用数字作答)解析:个位、十位和百位上的数字为3个偶数的有:种;个位、十位和百位上的数字为1个偶数2个奇数的有:种,所以共有个。22.(2005全国卷理第15题)在由数字0,1,2,3,4,5所组成的没有重复数字的四位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论