版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1 规则波特征1.1 波浪运动非线性定解问题 波浪理论按不同要素划分原则可分为:线性的、非线性的,有旋的、无旋的、规则的、不规则的、单向的或多向的、浅水的或深水的等。 我们主要关注与海洋石油平台结构密切相关的模型:一般远离海岸,局部水深不变,与波长相比,水深相对较大。第1页/共83页 基本假定 流体是均质和不可压缩的; 流体是无粘性的理想流体; 水流运动是无旋的; 海底水平、不透水; 流体上的质量力仅为重力; 波浪属于平面运动,即在xz平面内作二维运动。第2页/共83页势波的水质点的水平分速u和垂直分速w可由速度势函数导出 kwi uVkzixV xu zw 不可压缩流体连续方程 0 zwxu
2、02222 zx 02或记作 xuzw势波运动的控制方程 控制方程第3页/共83页 定解条件 ) 在海底表面,水质点垂直速度应为零,即0 hzw, 0 z z= -h ) 在波面z=处,应满足两个边界条件. 动力边界条件:由假设自由水面压力为常数并令p=0,根据伯努利方程有,02122gzxtzz非线性项非线性项第4页/共83页自由水面运动学边界条件为zzxxt, 0非线性非线性项项 ) 波场上、下两断面边界条件 ),(),(zctxtzx第5页/共83页02 波动定解问题hzz, 002122gzxtzzzzxxt, 0),(),(zctxtzxxu zw 2221zxtgzpp(压力场)(
3、流速场) z0第6页/共83页 两个困难 1) 自由水面边界条件是非线性的;2) 自由水面位移在边界上的值是未知的,即边界条件不是确定的。 要求得上述波动方程的边值解,最简单的方法是将边界条件线性化(自由面边界条件线性化),将问题化为线性问题求解,进而得到我们所说的微幅线性波理论。第7页/共83页1.2 线性微幅波理论(一阶近似)波动问题线性化假设波动的振幅a远小于波长L或水深h, 微幅波理论。首先由艾利1845年提出, 艾利波理论。非线性项与线性项之比是小量,可略去, 线性波理论。 第8页/共83页0, 0zgt0, 0ztz0,1ztgzzxxt, 002122gzxtzz0, 022zz
4、gt第9页/共83页 考虑平面行进波沿x正方向以波速c向前传播,x轴位于静水面上,z轴竖直向上为正。波浪在xz平面内运动。 计波面方程为z=(x,t),则:)sin(),(kxttxa 这里的 为波幅,k表示波数,表示x轴上2范围内波的个数。a-101234567-1.0-0.50.00.51.0/a第10页/共83页波形传播一个波长距离时,波浪质点振荡一个周期:kccT22kc第11页/共83页无限水深线性波及特征 用 表示相应的流体速度势。易知速度势与y无关。先考虑水深为无穷深的情况, 的定解条件如下:020ztz0ztg10z0z 无限水深入射波速度势第12页/共83页 由线性动力学条件
5、和平面行进波表达式,可知速度势取如下形式:)cos()(),(kxtzFtzx用线性动力学条件,可知:agF)0(第13页/共83页 再用线性运动学条件,可知:aF)0(用拉普拉斯方程决定入射波速度势表达式中的未知函数)(zF0)cos()cos()(2 kxtFkxtzFk该方程通解是:kzkzeezF)(第14页/共83页 由底部条件 可知 再根据: 可知: 再根据: 可以获得波数k与频率应满足下述关系式:agF)0(0z0agaF)0(gk2第15页/共83页 故得无限水深线性入射波势的表达势:)cos(kxtegkza由色散关系可得相速度c和波长之间的关系:2gkgkc即c与 成正比,
6、波长逾长传播速度愈大,这就是通常人们说的:长波传得快,短波传得慢。第16页/共83页练习1 矩形水池中流体的谐摇运动 考虑部分充水的一矩形水池,水深为常数虽且等于h,池宽为2b。假设在(y,z)平面内有流体的二维运动且水池本身不在移动。 (a)证明速度势: 满足Laplace方程和池底边界条件(b) 该速度势在池壁上满足边界条件的波数k是多少?第17页/共83页(c) 由自由液面条件证明,当流体可能有流动时,周期(即固有周期)仅能由下式给定:当 时,推导一个近似的公式。0/bh(d) 以时间函数的形式描述在自由液面处的流体运动。第18页/共83页练习2 行进水波 考虑一速度势: 其中: ,A为
7、常数,假定为深水且自由液面在水平范围内无限扩展。 (a) Laplace方程是否在流场内处处满足? (b) 该流场势所描述的波是沿何方向传播的? (c) 波幅在空间内是如何变化的?2/122)(yxr第19页/共83页 波浪运动速度,加速度 波以相速度传播,但流体质点却以低得多的速度运动,其速度为(u,v,w),即:)sin(kxtexukza)cos(kxtezwkza0yv第20页/共83页 按线性理论求得的波峰和波谷下速度的水平分布(x轴与z轴的尺度不同)第21页/共83页注意到当水深为波长一半处时即有: 可以看出该处的流体运动往往可以忽略不计,该处的流体被认为是静止不动的。根据这一点,
8、只要水深超过波长的一半,就可以认为水深是无穷。2/z0432. 022eeekz第22页/共83页 入射波浪场中流体质点运动的加速度为: x方向加速度分量: z方向加速度分量: )cos(),(21kxtetudttzxduakza)sin(),(23kxtetwdttzxdwakza第23页/共83页微幅波场中任一点的波浪压力可由线性化的伯努利方程求得。 2212zpgztxz zpgzt 线性化zk(压力响应系数) 静水压力部分 动水压力部分 水动压力)()sin(zkgkxteggzpzkza第24页/共83页kzzek Kz为压力响应系数或压力灵敏度系数,它是z的函数,随着质点位置深度
9、增大而迅速减小。 波面以下水质点动水压力Pd水头高度幅值为 ,其数值正比于波面瞬时波面位移(x,t),当自由面波面位移高于静水面时,动力压力为正( Pd 0),反之亦然。zKH2第25页/共83页沿x轴正向传播的正弦长峰波的波面升高, 压力,速度和加速度第26页/共83页按线性理论求得的波峰和波谷下的压力变化 第27页/共83页0,0 xz,dx dzdtdt静止时位于处的水质点,在波动中以速度运动着,在任一瞬间水质点的位置在00,xxzz与是水质点迁移量 (质点离开静止位置的水平和垂直距离).处速度 微幅波假定:00,xxzz处速度等于0,0 xz000000( )(0)(,)(,)ttx
10、txu xzdtu x zdt000000( )(0)(,)(,)ttz tzw xzdtw x zdt 水质点轨迹方程第28页/共83页 将微幅波速度u,w带入以上两个积分式,可得流体质点轨迹: 将流体质点轨迹表示成:0( )( )x txt0( )( )z tzt可以推算出x(t=0),z(t=0)表达如下)0(cos)cos()(0000 xkxekxtetxkzakza)0(sin)sin()(0000zkxekxtetzkzakza00cos)0(0kxexxkza00sin)0(0kxezzkza第29页/共83页水质点的迁移量ab水质点运动轨迹方程为 1220220 bzzaxx
11、任意时刻水质点的位置 0 xx 0yy)cos(00kxtekza)sin()(00kxtetkza第30页/共83页 在深水情况下,a=b= ,水质点运动轨迹为为一个圆,在水面处轨迹半径为波浪振幅,随着质点距水面深度增大,轨迹圆的半径以指数函数形式迅速减小。 kzae第31页/共83页 说明深水波的水质点以( , )为中心作圆周运动,其圆周半径为 ,并随水深增加呈指数减小 。在 时, ,运动半径仅为波幅的1/535,几乎无波动;在 时,即半个波长的水深处, ,运动半径为波幅的1/23,波动幅度很小,这种情况在工程上可认为是波浪的影响下限。 0 x0z0kzae0z 02535kzaaeae0
12、/ 2z 023kzaaeae第32页/共83页第33页/共83页第34页/共83页第35页/共83页 考虑在船模水池一端的造波机生成圆频率为 的长峰规则波。在以下计算中可假定波的周期为2s,波幅为0.25m,水池长l00m。(a)设水深无限,估算波浪由造波机行进到水池另一端需要多长时间?(b)设水面上有一个漂浮的软木塞且对波场无扰动,估算软木塞由造波机移动至水池另一端需要多长时间?(c)水池中最大流体速度为多少?(d)考虑在波前过去一段时间后有一位于池旁的观测者,连续两个波峰通过该观察者的时间间隔是多少?靠近造波机1.5m处的波面升高相对观察者处的波面升高的相位为多少?(e)如果观察者以的速
13、度走向或离开造波机时,(d)的结果如何?(f)如果水深为l0m或1m时,(c)、(d)和(e)的结果如何? 练习3 规则波运动学 第36页/共83页有限水深线性波及特征 再考虑有限水深的情况,设水深为常数h,且水底是刚性壁面,即水底边界条件为:0z)(hz 同前面针对无限水深的入射波势的分离变数解求解方法,可知适合该底部条件的解为:)()()(khchhzkchzF根据自由面运动学条件: agF)0( 可知/ag 入射波速度势第37页/共83页 所以速度势为:)cos()(kxtchkhhzkchga根据自由面动力学条件:aF)0(可以获得有限水深情况下的色散关系:2gkthkh 在水深h趋于
14、无穷大时,kzechkhhzkch )(1thkh 有限水深速度势和色散关系与无限水深情况一致。第38页/共83页 波以相速度传播,但流体质点却以低得多的速度运动,其速度为(u,v,w),即:)sin()(kxtshkhhzchkxua)cos()(kxtshkhhzshkzwa0yv 流场速度和加速度第39页/共83页 入射波浪场中流体质点运动的加速度为: x方向加速度分量: z方向加速度分量: )cos()(),(21kxtshkhhzchktudttzxduaa)sin()(),(23kxtshkhhzshktwdttzxdwaa第40页/共83页微幅波场中任一点的波浪压力可由线性化的伯
15、努利方程求得。 2212zpgztxz zpgzt 线性化zk(压力响应系数) 静水压力部分 动水压力部分 )()sin()(zkgkxtchkhhzchkggzpza 流场水动压力第41页/共83页0,0 xz,dx dzdtdt静止时位于处的水质点,在波动中以速度运动着,在任一瞬间水质点的位置在00,xxzz与是水质点迁移量 (质点离开静止位置的水平和垂直距离).处速度 微幅波假定:00,xxzz处速度等于0,0 xz000000( )(0)(,)(,)ttx txu xzdtu x zdt000000( )(0)(,)(,)ttz tzw xzdtw x zdt 水质点轨迹方程第42页/
16、共83页 将微幅波速度u,w带入以上两个积分式,可得流体质点轨迹: 将流体质点轨迹表示成:0( )( )x txt0( )( )z tzt可以推算出x(t=0),z(t=0)表达如下)0(cos)()cos()()(0000 xkxshkhhzchkkxtshkhhzchktxaa)0(sin)()sin()()(000zkxshkhhzshkkxtshkhhzshktzaa000cos)()0(kxshkhhzchkxxa00sin)()0(kxshkhhzshkzza第43页/共83页水质点的迁移量ab水质点运动轨迹方程为 1220220 bzzaxx任意时刻水质点的位置 0 xx 0yy
17、)cos()(00kxtshkhhzchka)sin()()(00kxtshkhhzshkta第44页/共83页 水质点运动轨迹为一个封闭椭圆,其水平长半轴为a,垂直短半轴为b。在水面处ba,即为波浪的振幅,在水底处b,说明水质点沿水底只作水平运动。 水平长半轴a为: 垂直短半轴b为:shkhhzchkaa)(0shkhhzshkba)(0第45页/共83页第46页/共83页第47页/共83页 系统地讨论了微幅波的控制方程、定解条件、微幅波理论解以及其运动特性等。 微幅波理论是各种波浪理论中最为基本的理论,其概念清楚,公式简明,运用方便,是解决港口、海岸工程各种实际问题最重要的工具之一,目前仍
18、被工程界广泛用于解决各类实际问题。微幅波理论还可推广用来解决目前用其它非线性波理论还难以解决的一些问题,诸如波浪折射、绕射现象和不规则波的波谱理论等。 实践表明,在许多实际问题中,尽管实际波况已超出了微小波高的假设,但应用微幅波理论进行计算往往仍可取得比较可信的结果。 微幅波理论小结第48页/共83页 实际海洋中,波高常达数米以至数十米,波面振幅较大,微幅波理论的假设与实际不符,此时不符合线性波理论的微幅波要求,需要使用更高阶的近似解。 1.3 二阶斯托科斯波理论(二阶近似)第49页/共83页 非线性作用的重要程度取决于3个特征比值; 波陡H/L 相对波高H/h 相对水深h/L 在深水中,影响
19、最大的特征比值是波陡H/L,越大,非线性作用越大;在浅水中最重要的参数是相对波高H/h ,相对波高愈大,非线性作用愈大。 第50页/共83页 一般使用小参数摄动法将非线性边界条件摄动展开求其摄动解。由于影响波动性质的主要因素有波陡、相对水深、相对波高,对它们的不同考虑与选择就得到不同的有限振幅波动理论。 第51页/共83页 斯托克斯波(Stokes波)是1847年由英国流体力学学者斯托克斯提出的一种针对非线性重力波的近似理论,它的理论基础同小振幅波理论,重力也是其唯一的外力,但振幅波长比 不再是个小量,将有关物理量对 做摄动展开,对摄动参数取不同阶次就得到不同阶的Stokes波动理论。由 的一
20、阶方程得到的是线性波动方程,说明小振幅波理论是斯托克斯波理论的一个线性特例。二阶斯托克斯波控制方程 /a第52页/共83页 对于波陡较小的弱非线性问题,一个有效途径是采用摄动法求解,假设速度势函数和波面曲线都是某一微小参数的幂级数,即 .2211 nnnnn .2211nnnnn摄动参数 1.221 n=1 为1阶近似解(即线性解)解的关键在于找出摄动参数和各阶解。 n=2为2阶近似解第53页/共83页(1)流域内满足拉普拉斯方程:(2)底部的滑移条件: )0(02zh)(0)2(hzz(3) 自由面上的条件: 为了确定与给定的一阶势有关的二阶势,首先将一阶势(和自由面有关的波面位移)代入自由
21、面条件的右端,然后 寻求问题的特解 。)2(第54页/共83页 自由面波高的二阶分量为: 对于二阶斯托克斯波,其解与一阶微幅规则波组成有关。如果考虑斯托克斯方程控制方程自由面边界条件右端的一阶微幅平面行进波组成,二阶入射波分为单色规则二阶斯托克斯波,双色规则二阶斯托克斯波和不规则波中的二阶斯托克斯波等几种情况。第55页/共83页 )(2cos212)2(kxtka单色波中的二阶斯托克斯波(无限水深) 针对无限水深的线性微幅规则波,可以证明其引起的二阶斯托克斯波速度势为零。 按照二阶波表达形式其二阶波面升高为: 将其与一阶解结合起来,可以看到二阶结果使波峰尖削,波谷变浅。)sin()1(kxta
22、第56页/共83页)(2cos21sin2kxtkkxtaa深水情况下波面位移的2阶解可化简为非线性影响项斯托克斯2阶波波形与微幅波的比较:波峰处,波面抬高, 因而变为尖陡;波谷处,波面抬高,因而变得平坦。波峰波谷不再对称于静水面。随着波陡增大,峰谷不对称将加剧。 第57页/共83页 二阶斯托克斯波与微幅波另一个明显的差别是其水质点的运动轨迹不封闭。水质点运动一个周期后有一净水平位移。 这种净水平位移造成一种水平流动,称为漂流或质量输移。 一个波周期内质点平均漂流速度,称传质速度。 对无限水深情况,传质速度等于:022kzake第58页/共83页 德(De,1955) 曾指出,斯托克斯波理论不
23、能用于h/L0.125的情况。 勒梅沃特(Le Mehaute) 认为斯托克斯波不能用于h/L0.1的情况。h/L的最小限值还与波陡H/L有关。波陡越大,限值也越大,即适用水深范围越窄。波浪非线性的主要特征有哪些? 波面 水质点速度 水质点的运动轨迹 第59页/共83页 假设随机海浪自由面波面位移(t)是均值为零的平稳随机过程,定义自相关函数为: 式中:E为数学期望。过程(t)是平稳的,自相关函数只取决于。它是通过(t)和(t+)的时间平均得出的。 )()()(ttERdtttTRT0)()(1)(2.1 随机海浪的谱分析简介2、波浪的统计描述第60页/共83页 平稳过程的谱是其相关函数的傅立
24、叶变换,按此可以得到两者的变换关系。dsRcos)()(0dRscos)(2)(0 波面起伏的方差可以通过谱密度积分来表示:dsRtE022)()0()(第61页/共83页jijjiijajait)(cos21 将不规则波模拟为大量正弦函数之和)sin()(iiiaitt于是得:)(sin()sin()()(jjiiijajaittttjijjiajijait)(cos21jijjiijajait)(cos21 其时间平均值为:iiaittERcos21)()()(2 将不规则波模拟为大量正弦函数之和jijjiijajait)(cos21 将不规则波模拟为大量正弦函数之和jijjiijajai
25、t)(cos21 将不规则波模拟为大量正弦函数之和jijjiijajait)(cos21 将不规则波模拟为大量正弦函数之和 将不规则波模拟为大量正弦函数之和jijjiijajait)(cos21 将不规则波模拟为大量正弦函数之和jijjiijajait)(cos21第62页/共83页 根据谱密度与自相关函数间关系,有:iaidsR20221)()0(于是可以得出:)(212iais第63页/共83页 2.2 不规则波模型 当前应用数值方法依据非线性波浪理论直接模拟海浪已经取得很大进展。在实践中,线性理论常被用来模拟不规则海浪并获得统计预测。沿x轴正向传播的长峰不规则波的波面升高可看作大量单元规
26、则波的组合,即: Njjjjajxkt1)sin(第64页/共83页 式中: 和 , , 分别表示第j个单元波的波幅、圆频率、波数及随机相位角。随机相位角在0与1之间均匀分布且与时间无关。对于深水波,满足色散关系式。波幅 可由波谱表达,写作 aj式中: 是相继频率之间的频率间隔。jjk)(212jajsjaj第65页/共83页长峰短期海况频域与时域描述之间的联系 第66页/共83页 可由前面式子模拟复杂海况,但该表达式在时间 后将重复,因此需要大数量的单元波,实际做法是在 频率段内选择随机频率,并以这些频率计算波谱以避免该问题。单元波的数量应取1000个左右。这部分地取决于最小和最大频率单元波
27、的选择。选择最小频率较之最大频率容易,主要是因为高频波能比低频波能降低较慢。) 1(2xiX是0-1之间的随机数。第67页/共83页 下图所示为一些波面升高的模拟例子,每个模拟都应用相同的波谱与持续时间。结果不同的原因是由于随机选择频率和相位角。注意每一模拟(实况)中最大波幅不同。 第68页/共83页第69页/共83页2.3 频谱经验公式 由波浪的测量可获得波谱(Kinsman,1965),它假设海况可描绘为一平稳随机过程,这实际上说的是从半小时到约10小时之内的一段有限时间,在文献中常称之为海浪的短期描述。 第70页/共83页 ISSC(lnternational Ship and Shor
28、e Structures Congress国际船舶与海洋结构会议)和ITTC(lnternational Towing Tank Conference国际船模试验池会议)推荐的海浪谱常用以计算 。例如,第15届ISSC会议推荐了开阔海域中充分发展海浪的波谱公式(修正的Pierson-Moskowitz谱):式中: 为有义波高,是三分之一最大波高的平均值;T1为平均波浪周期(也称为谱心周期) ISSC双参数谱第71页/共83页 式中mk表示海浪谱的k阶矩。利用谱矩还可以定义平均跨零周期:有义波高:第72页/共83页 JONSWAP JONSWAP谱 JONSWAP谱:英、荷、美、德等国在19681969年实施北海波浪联合研究计划(The Joint North Sea Wave Project)时得到的经验谱。222)1159. 0(exp44542)1948exp()ln(287. 01487)(pTpp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《肺段切除术与楔形切除术治疗早期非小细胞肺癌的Meta分析与临床研究》
- 《终末期肾脏病患者血清Fetuin-A和Klotho蛋白水平及其与腹主动脉钙化的相关性研究》
- 《滨海盐碱化村庄复垦土地的生产力修复研究》
- 视频维护合同范本
- 《税收负担对制造业科技创新的影响研究》
- 地宫销售合同范本
- 《阿多诺艺术哲学思想范畴研究》
- 《萘对高羊茅的毒性及其响应机制的代谢组学研究》
- 《鲜食糯玉米新组合评价指标体系的研究》
- 《大提琴应用于民族管弦乐队的历史研究》
- MOOC 新时代中国特色社会主义理论与实践-武汉理工大学 中国大学慕课答案
- 放射科疑难病例分析
- 封闭校园管理班会
- 机械制造基础说课市公开课一等奖省赛课微课金奖课件
- 2019年1月自考00804金融法二试题及答案含解析
- 河北中盐龙祥盐化有限公司宁晋盐矿矿山地质环境保护与土地复垦方案
- 2017年10月自考00258保险法试题及答案含解析
- 放射人员辐射安全培训课件
- 社会稳定风险评估 投标方案(技术标)
- 第21届WMO初赛3年级A卷(含答案)
- 中级会计课程设计
评论
0/150
提交评论