毕业设计—自动钻床PLC控制及仿真_第1页
毕业设计—自动钻床PLC控制及仿真_第2页
毕业设计—自动钻床PLC控制及仿真_第3页
毕业设计—自动钻床PLC控制及仿真_第4页
毕业设计—自动钻床PLC控制及仿真_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、毕业综合技能实践论文论文题目:自动钻床PLC控制及仿真学号:21033344姓 名:信廷玉系 部:电气工程系专 业 名 称:机电一体化 指 导 教 师:王德志 包头职业技术学院电气工程系毕业综合实践论文2014年12月15日52包头职业技术学院电气工程系毕业设计任务书一、 设计题目:自动钻床PLC控制及仿真二、 设计要求:1.根据钻床工作情况,要求有三个液压缸。一个夹紧缸,一个送料缸,一个钻削缸。2.动作循环:送料夹紧 钻削缸快进钻削缸快退松开;并且还要有泵卸荷功能。3.注意:为了提高生产率,送料杆退出干涉位置后,夹紧缸就伸出夹紧,而不要等到送料缸缩回到位后,夹紧缸才动作。4.设计应完成的技术

2、文件(1)电磁铁动作表、液压系统原理图。(2)PLC的IO地址分配表、外部接线图。(3)功能表图、梯形图。(4)仿真过程及结果。前 言液压传动作为一种易于推广普及的自动化应用技术,它是以流体作为工作介质对能量进行传动和控制的一种传动形式。其具有输出力大,重量轻,惯性小,调速方便以及易于控制等优点。PLC是一种功能强、编程简单、可靠性高的自动控制产品,两者在工业生产上都得到了广泛的应用。用液压自动化控制技术实现生产的自动化,是工业自动化的一种重要技术手段,也是一种低成本自动化技术。根据钻床加工的要求,采用可编程控制器(简称PLC)实施对钻床加工的自动控制。主要完成对钻床主体控制电路、PLC控制平

3、台、梯形图和硬件系统的设计。此设计方法比采用数控系统控制该单元的成本降低60%80%,并且同样可保证孔系的加工精度,在I/O接口上还可使用拓展模块进行工艺的改进及系统扩充,具有较强的实用性。基于以上考虑,为提高生产效率,提高自动化程度,现设计一全液压钻床。该机床对工件进行快速定位、夹紧以及钻削加工。本文设计的全自动液压钻床通过液压传动来传递动力,通过PLC来控制机床动作目录1 自动钻床概述自动钻床是一种自动化钻孔平台,是指利用比目标物更坚硬、更锐利的工具通过旋转切削或旋转挤压的方式,在目标物上留下圆柱形孔或洞的机械和设备统称。也有称为打孔机、钻孔机、打眼机、通孔机等。通过对精密部件进行钻孔,来

4、达到预期的效果,自动钻床有自动钻床和手动钻床,随着人力资源成本的增加;大多数企业均考虑自动钻床作为发展方向。随着时代的发展,自动钻床的钻孔技术的提升,采用自动钻床对各种五金模具表带钻孔 表带钻孔 首饰进行钻孔优势明显。2液压系统设计2.1液压系统基本概念 1、何谓液压传动?其基本工作原理是怎样的? 答:(1)液压传动是以液体为工作介质,利用液体的压力能来实现运动和力的传递的一种传动方式。(2)液压传动的基本原理为帕斯卡原理,在密闭的容器内液体依靠密封容积的变化传递运动,依靠液体的静压力传递动力。 2、什么是压力?压力有哪几种表示方法?液压系统的工作压力与外界负载有什么关系? 答:(1)液体单位

5、面积上所受的法向力称为压力。(2)压力有两种表示方法:绝对压力和相对压力。以绝对真空作为基准进行度量的压力,称为绝对压力;以当地大气压力为基准进行度量的压力,称为相对压力。(3)液压系统的工作压力由负载决定。 3、什么叫真空度? 答:如果液体中某点处的绝对压力小于大气压力,这时该点的绝对压力比大气压小的那部分压力值,称为真空度。真空度=大气压力绝对压力 4、理想液体伯努力方程的物理意义是什么? 答:理想液体伯努力方程的物理意义是:管道中作恒定流动的理想液体具有压力能、位能和动能,他们之间可以相互转换,但在任意截面处其总和不变,即能量守恒。 5、液压系统中产生沿程压力损失的局部压力损失的原因是什

6、么? 答:沿程压力损失是液体在等径直管中流动时因黏性摩擦而产生的压力损失;局部压力损失由于管道截面突然变化、液流方向改变或其他形式的液流阻力而引起的压力损失。 6、流体有哪两种状态?如何判别这两种状态?不同流态的物理本质是什么? 答:(1)流体有层流和紊流两种状态。(2)判别流体是层流还是紊流须用雷诺数来判断。雷诺数Re=(v*d)/,当内诺数小于临界雷诺数时,液流为层流;当内诺数大于临界雷诺数时,液流为紊流。(3)层流时,黏性力起主导作用,惯性力与黏性力相比不大,液体流速较低,液体质点主要受黏性力制约,不能随意运动;紊流时。惯性力起主导作用,液体流速较较高,黏性力的制约作用减弱。 7、液压油

7、黏性的物理意义是什么? 答:液压油黏性的物理意义是:液体在流动时抵抗变形能力的一种度量。2.2液压系统组成组成部分一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。动力元件动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。执行元件执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。控制元件控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为压力控制阀、流量控制阀和

8、方向控制阀。压力控制阀又分为溢流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。辅助元件辅助元件包括油箱、滤油器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位油温计液压油等。液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。2.3液压传动特点.1.优点(1)体积小输出力大。(2)不会有过负载的危险(装有溢流阀)(3)输力调整容易(调整压力控制阀)(4)速度调整容易,可实现无级调

9、速(5)易于自动化2.缺点(1)接管不良时会导致液压油外泄(会污染工作场所可能引起火灾)。(2 )油的粘度发生变化时,流量也会跟着改变,造成速度不稳定。(3)机械能转换成压力能,在液体压力转换成机械能来做功,能量经两次转换后,损失较大,能源使用效率比传统机械传动低。(4)为防止泄漏损耗,元件加工精度较高2.4液压元件液压元件中可分为动力元件和控制元件以及执行元件三大类2.4.1动力元件动力元件(油泵) 它的作用是把液体利用原动机的机械能转换成液压力能;是液压传动中的动力部分。动力元件:齿轮泵、叶片泵、柱塞泵、螺杆泵(动力元件指的是各种液压泵)。1、齿轮油泵(包括外啮合与内啮合)两种结构型式。

10、2、叶片油泵(包括单级泵、变量泵、双级泵、双联泵)。 3、柱塞油泵,又分为轴向柱塞油泵和径向柱塞油泵,轴向柱塞泵有定量泵、变量泵、(变 量泵又分为手动变量与压力补偿变量、伺服变量等多种)从结构上又分为端面配油和阀式配油两种配油方式,而径向柱塞泵的配油型式,基本上为阀式配油。)名称符号说明液压泵液压泵一般符号单向定量液压泵单向旋转、单向流动、定排量双向定量液压泵双向旋转,双向流动,定排量单向变量液压泵单向旋转,单向流动,变排量双向变量液压泵双向旋转,双向流动,变排量2.4.2执行元件执行元件(油缸、液压马达) 它是将液体的液压能转换成机械能。其中,油缸做直线运动,马达做旋转运动。执行元件:液压缸

11、、活塞液压缸、柱塞液压缸、摆动液压缸、组合液压缸; 液压马达:齿轮式液压马达、叶片液压马达、柱塞液压马达; 单作用缸单活塞杆缸单活塞杆缸(带弹簧复位)柱塞缸伸缩缸双作用缸单活塞杆缸双活塞杆缸2.4.3控制元件控制元件 包括压力阀、流量阀和方向阀等。它们的作用是根据需要无级调节液动机的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。控制元件:方向控制阀、单向阀、换向阀; 压力控制阀:溢流阀、减压阀、顺序阀、压力继电器等; 流量控制阀:节流阀、调速阀、分流阀; 控制方法单向滚轮式仅在一个方向上操作,箭头可省略先导型比例电磁式压力控制阀人力控制一般符号电气控制方法单作用电磁铁按钮式

12、60;双作用电磁铁拉钮式 单作用可调电磁操作(比例电磁铁,力马达等)按-拉式 双作用可调电磁操作(力矩马达等)手柄式 旋转运动电气控制装置各种阀门(1)压力控制阀名称符号说明名称符号说明溢流阀溢流阀一般符号或直动型溢流阀减压阀先导型比例电磁式溢流减压阀 先导型溢流阀 定比减压阀减压比1/3先导型电磁溢流阀(常闭)定差减压阀 直动式比例溢流阀 顺序阀顺序阀一般符号或睦动型顺序阀先导比例溢流阀 先导型顺序阀 卸荷溢流阀p2p1时卸荷单向顺序阀(平衡阀) 双向溢流阀直动式,外部泄油卸荷阀卸荷阀一般符号

13、或直动型卸荷阀减压阀减压阀一般符号或直动型减压阀先导型电磁卸荷阀p1p2先导型减压阀 制动阀双溢流制动阀 溢流减压阀 溢流油桥制动阀 (4)方向控制阀名称符号说明名称符号说明单向阀单向阀详细符号换向阀二位五通液动阀 简化符号(弹簧可省略)二位四通机动阀 液压单向阀液控单向阀详细符号(控制压力关闭阀)三位四通电磁阀 简化符号三位四通电液阀简化符号(内控外泄)详细符号(控制压力打开阀)三位六通手动阀 简化符号(弹簧可省略)三位五通电磁阀 双液控单向阀 三位四通电液阀外控内泄(带手动应急控制装置)梭阀

14、或门型详细符号三位四通比例阀节流型,中位正遮盖简化符号三位四通比例阀中位负遮盖换向阀二位二通电磁阀常断二位四通比例阀 常通四通伺服 二位三通电磁阀 四通电液伺服阀二级二位三通电磁球阀 带电反馈三级二位四通电磁阀    (5)流量控制阀名称符号说明名称符号节流阀可调节流阀详细符号调速阀调速阀简化符号旁通型调速阀不可调节流阀一般符号温度补偿型调速阀单向节流阀 单向调速阀双单向节流阀 同步阀分流阀截止阀 单向分流阀滚轮控制节流阀(减速阀) 集流阀调速阀调速阀详细符号分流集流阀2.4

15、.4辅助元件辅助元件 除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、管件主要包括: 各种管接头(扩口式、焊接式、卡套式,sae法兰)、高压球阀、快换接头、软管总成、测压接头、管夹等及油箱等,它们同样十分重要。辅助元件:蓄能器、过滤器、冷却器、加热器、油管、管接头、油箱、压力计、流量计、密封装置等油箱 过滤器 温度调节器 冷却器 工作介质 工作介质是指各类液压传动中的液压油或乳化液,它经过油泵和液动机实现能量转换2.5液压基本回路所谓液压基本回路就是由有关的液压元件组成用来完成某种特定功能的典型回路。一些液压设备的液压系统虽然很复杂,但它通常都由一些基本回路组成,所以掌握一些

16、基本回路的组成、原理和特点将有助于认识分析一个完成的液压系统。包括压力控制回路、速度控制回路、多缸控制回路等。2.5.1方向控制回路液压系统中,执行元件的启动和停止,是通过控制进入执行元件的液流的通或断来实现的;执行元件 运动方向的改变,是通过改变流入执行元件的液流方向来实现的。实现上述功能的回路称为方向控制回路。2.5.2压力控制回路一、压力控制回路 压力控制回路是利用压力控制阀来控制系统整体或某一部分的压力,以满足液压执行元件对力或转矩要求的回路,这类回路包括调压、减压、卸荷、增压、保压、平衡等多种回路。 1. 调压回路:调压回路的功用是使液压系统整体或部分的压力保持恒定或不超过某个数值。

17、在定量泵系统中,液压泵的供油压力可以通过溢流阀来调节。在变量泵系统中,用安全阀来限定系统的最高压力,防止系统过载。若系统中需要二种以上的压力,则可采用多级调压回路。 1)单级调压回路 如图所示,在液压泵出口处设置并联溢流阀即可组成单级调压回路,从而控制了液压系统的工作压力。2)二级调压回路如图a所示为二级调压回路,可实现两种不同的系统压力控制。由溢流阀2和溢流阀4各调一级,当二位二通电磁阀3处于图示位置时,系统压力由阀2调定,当阀3得电后处于右位时,系统压力由阀4调定,但要注意:阀4的调定压力一定要小于阀2的调定压力,否则不能实现;当系统压力由阀4调定时,溢流阀2的先导阀口关闭,但主阀开启,液

18、压泵的溢流流量经主阀回油箱。 3)多级调压回路 如图b所示的由溢流阀1、2、3分别控制系统的压力,从而组成了三级调压回路。当两电磁铁均不带电时,系统压力由阀1调定,当1YA得电,由阀2调定系统压力;当2YA带电时系统压力由阀3调定。但在这种调压回路中,阀2和阀3的调定压力都要小于阀1的调定压力,而阀2和阀3的调定压力之间没有什么一定的关系。4)连续、按比例进行压力调节的回路 如图c所示调节先导型比例电磁溢流阀的输入电流I,即可实现系统压力的无级调节,这样不但回路结构简单,压力切换平稳。而且更容易使系统实现远距离控制或程序控制2)二级调压回路 3多级调压回路 4.连续、按比例进行压力调节的回路2

19、. 减压回路: 减压回路的功用是使系统中的某一部分油路具有较系统压力低的稳定压力。最常见的减压回路通过定值减压阀与主油路相连,如图a所示。回路中的单向阀供主油路压力降低(低于减压阀调整压力)时防止油液倒流,起短时保压之用,减压回路中也可以采用类似两级或多级调压的方法获得两级或多级减压,图2b所示为利用先导型减压阀1的远控口接一远控溢流阀2,则可由阀1、阀2各调得一种低压,但要注意,阀2的调定压力值一定要低于阀1的调定压力值。3. 卸荷回路 1)采用复合泵的卸荷回路:图示利用复合泵作液压钻床的动力源。当液压缸快速推进时,推动液压缸活塞前进所需的压力较左右两边的溢流阀所设定压力还低,故大排量泵和小

20、排量泵的压力油全部送到液压缸使活塞快速前进采用复合泵的卸荷回路:图示利用复合泵作液压钻床的动力源。当液压缸快速推进时,推动液压缸活塞前进所需的压力较左右两边的溢流阀所设定压力还低,故大排量泵和小排量泵的压力油全部送到液压缸使活塞快速前进。 当钻头和工件接触时,液压缸活塞移动速度要变慢且在活塞上的工作压力变大,此时往液压缸管路的油压力上升到比右边的卸荷阀设定的工作压力大时,卸荷阀被打开,低压大排量泵所排除的液压油经卸荷阀送回油箱。单向阀受高压油作用的关系,故低压泵所排出的油根本就不会经单向阀流到液压缸。可知在钻削进给的阶段,液压缸的油液就由高压小排量泵来供给。因为这种回路的动力几乎完全是由高压泵

21、在消耗而已,故可达到节约能源的目的。卸荷阀的调定压力通常比溢流阀的调定压力要低0.5MPa以上。 2)利用二位二通阀旁路卸荷的回路: 利用二位二通阀旁路卸荷的回路:图示回路,当二位二通阀左位工作,泵排除的液压油以接近零压状态流回油箱以节省动力并避免油温上升。图中二位二通阀系以手动操作,亦可使用电磁操作。注意二位二通阀的额定流量必须和泵的流量相适宜。3)利用换向阀卸载的回路: 利用换向阀卸载的回路:图示回路,是采用中位串联型(M型中位机能)换向阀,当阀位处于中位置时,泵排出的液压油直接经换向阀的PT通路流回油箱,泵的工作压力接近于零。使用此种方式卸载,方法比较简单,但压力损失较多,且不适用于一个

22、泵驱动两个或两个以上执行元件的场所。注意三位四通换向阀的流量必须和泵的流量相适宜。 4)利用溢流阀远程控制口卸载的回路:图示,将溢流阀的远程控制口和二位二通电磁阀相接。当二位二通电磁阀通电,溢流阀的远程控制口通油箱,这时溢流阀的平衡活塞上移,主阀阀口打开,泵排出的液压油全部流回油箱,泵出口压力几乎是零,故泵成卸荷运转状态。注意图中二位二通电磁阀只通过很少流量,因此可用小流量规格(尺寸为1/8或1/4)。在实际应用上,此二位二通电磁阀和溢流阀组合在一起,此种组合称为电磁控制溢流阀。4. 增压回路 1)利用串联液压缸的增压回路:图示,将小直径液压缸和大直径液压缸串联可使冲柱急速推出,且在低压下可得

23、很大的力量输出。将换向阀移到左位,泵所送过来的油液全部进入小直径液压缸活塞后侧,冲柱急速推出,此时大直径液压缸由单向阀将油液吸入,且充满大液压缸后侧空间。当冲柱前进达尽头受阻时,泵送出的油液压力升高,而使顺序阀动作,此时油液以溢流阀所设定的压力作用在大小直径液压缸活塞后侧,故推力等于大小直径液压缸活塞后侧面积和乘上溢流阀所调定的压力。当然如想以单独使用大直径液压缸以同样速度运动话,势必选用更大容量的泵,而采用这种串联液压缸则只要用小容量泵就够了,节省许多动力。 2)利用增压器的增压回路:图示是采用单动型增压器作为液压压床冲柱增压用。将三位四通换向阀移到右位工作时,泵将油液经引导型单向阀送到液压

24、缸活塞后侧使冲柱向下压,同时增压器的活塞也受到油液作用向右移动,但达到规定的压力自然就停止,使它成为只要一有油送进增压器活塞大直径侧就能够马上前进的状态。于是当冲柱下降碰到工件(即产生负荷),则泵的输出立即升高并打开顺序阀,经减压阀减压的后油液以减压阀所调定的压力作用在增压器的大活塞上,于是使增压器小直径侧产生3倍减压阀所调定压力的高压油液进入冲柱上方而产生更强的加压作用。当换向阀移到阀左位时,冲柱上升,换向阀如移到中立阀位时,可以暂时防止冲柱向下掉。如果要完全防止其向下掉,则必须在冲柱下降时油的出口处装一液控单向阀。 3)气压液压的增压回路:图示,是把上方油箱的油液先送入增压器的出口侧,再由

25、压缩空气作用在增压器大活塞面积上使出口侧油液压力增强。把手动操作换向阀移到阀右位工作时,空气进入上方油箱把上方油箱的油液经增压器小直径活塞下部送到三个液压缸。当液压缸冲柱下降碰到工件时,造成阻力使空气压力上升打开顺序阀,使空气进入增压器活塞的上部来推动活塞。增压器的活塞下降会遮住通往上方油箱的油路,活塞继续下移,使小直径活塞下侧的油液变成高油液并注到三支液压缸。一旦把换向阀移到阀左位时,下方油箱的油会从液压缸下侧进入把冲柱上移,液压缸冲柱上侧的油液流经增压器并回到上方油箱增压器恢复原来位置。2)利用蓄能器的保压回路: 这种蓄能器借助蓄能器来保持系统压力,补偿系统泄漏。图示为利用虎钳做工件的夹紧

26、。将换向阀移到阀左位时,活塞前进将虎钳夹紧,这时泵继续输出的压力油将蓄能器充压,直到卸荷阀被打开卸载,此时作用在活塞上的压力由蓄能器来维持并补充液压缸的漏油作用在活塞上,当工作压力降低到比卸荷阀所调定的压力还低时,卸荷阀又关闭,泵的液压油再继续送往蓄能器。本系统可节约能源并降低油温。6. 平衡回路: 平衡回路的功用在于防止垂直或倾斜放置的液压缸和与之相连的工作部件因自重而自行下落。平衡回路:图a所示为采用单向顺序阀的平衡回路,当lYA得电后活塞下行时,回油路上就存在着一定的背压;只要将这个背压调得能支承住活塞和与之相连的工作部件自重,活塞就可以平稳地下落。当换向阀处于中位时,活塞就停止运动,不

27、再继续下移。这种回路当活塞向下快速运动时功率损失大,锁住时活塞和与之相连的工作部件会因单向顺序阀和换向阀的泄漏而缓慢下落;因此它只适用于工作部件重量不大、活塞锁住时定位要求不高的场合。图b为采用液控顺序阀的平衡回路。当活塞下行时,控制压力油打开液控顺序阀,背压消失,因而回路效率较高,当停止工作时,液控顺序阀关闭以防止活塞和工作部件因自重而下降。这种平衡回路的优点是只有上腔进油时活塞才下行,比较安全可靠;缺点是,活塞下行时平稳性较差。这是因为活塞下行时,液压缸上腔油压降低,将使液控顺序阀关闭。当顺序阀关闭时,因活塞停止下行,使液压缸上腔油压升高,又打开液控顺序阀。因此液控顺序阀始终工作于启闭的过

28、渡状态,因而影响工作的平稳性,这种回路适用于运动部件重量不很大、停留时间较短的液压系统中。二、速度控制回路 速度控制回路是调节和变换执行元件运动速度的回路。包括调速回路、快速运动回路、速度换接回路。其中,调速回路是液压系统用来传递动力的,它在基本回路中占重要地位。(一)调速回路 调速原理:vQ/A和nQ/q,可用改变流量Q或排量q的方法来改变执 行元件运动速度。 种类:节流调速回路、容积调速回路、容积节流调速回路。1.节流调速回路 用定量泵供油,采用流量阀调节执行元件的流量,以实现调速。包括进口节流调速、出口节流调速、旁路节流调速。 节流调速适用于轻载、低速、负载变化不大和对稳定性要求不高的小

29、功率液压系统。特征:将节流阀串联在进入液压缸的油路上,即串联在泵和缸之间,调节A节,即可改变Q,从而改变速度,且必须和溢流阀联合使用速度负载特性:最大承载能力:Fmax ppA1 功率和效率:液压泵输出功率PpppQ1=常数液压缸输出功率P1 p1Q 1 功率损失P= Pp - P1= ppQp - p1Q 1 =pp Q+ p Q 1 =溢流损失节流损失。回路效出口节流调速特征:将节流阀串联在液压缸的回油路上,即串联在缸和油箱之间,调节AT,可调节Q1以改变速度,仍应和溢流阀联合使用,pP = pY。速度负载特性: 功率和效率:旁路节流调速特征:将节流阀装在与执行元件并联的支路上,即与缸并联

30、,溢流阀 做安全阀,pP取决于负载, pP = p1=p = F/A2.容积调速回路 用变量泵和变量马达实现调速。 容积调速回路适用于大功率、重载、高速的中高压系统。1)变量泵定量执行元件(35) nM = QP/qM qM = 定值 调节QP即可改变nM  2)定量泵变量马达(13) nM = QP/qM QP = 定值 调节qM即可改变nM 3)变量泵变量马达(13)第一步,先将qM调至最大并固固定,然后将qP由小大, nM从0 。 (变定)第二步,将qP固定至最大, qM由大小, nM到nMmax(定变) 3.容积节流调速回路 用变量泵和流量阀实现调速。 容积节流调速回路适用于

31、负载变化大,速度较低的中、小功率场合。(二)快速运动回路 快速运动回路又称增速回路,其功用在于使液压执行元件在空载时获得所需的高速,以提高系统的工作效率或充分利用功率。实现快速运动的方法不同有多种方案,下面介绍几种常用的快速运动回路。 1差动回路:图示为差动回路,其特点为当液压缸前进时,活塞从液压缸右侧排出的油再从左侧进入液压缸,增加进油处的一些油量,即和泵同时供应液压缸进口处的液压油,可使液压缸快速前进,但使液压缸推力变小。1 采用蓄能器的快速补油回路: 对于间歇运转的液压机械,当执行元件间歇或低速运动时,泵向蓄能器充油。而在工作循环中某一工作阶段执行元件需要快速运动时,蓄能器作为泵的辅助动

32、力源,可与泵同时向系统提供压力油。图示为一补助能源回路。将换向阀移到阀右位时,蓄能器所储存的液压油即释放出来加到液压缸,活塞快速前进。例如活塞在做浇注或加压等操作过程时,液压泵即对蓄能器充压(蓄油)。当换向阀移到阀左位时,此时蓄能器液压油和泵排出的液压油同时送到液压缸的活塞杆端,活塞快速回行。这样,系统中可选用流量较小的油泵及功率较小电动机,可节约能源并降低油温。 2两种慢速的换接回路:图示为用两个调速阀来实现不同工进速度的换接回路。图a中的两个调速阀并联,由换向阀实现换接。两个调速阀可以独立地调节各自的流量.互不影响;但是.一个调速阀工作时另一个调速阀内无油通过,它的减压阀不起作用而处于最大

33、开口位置,因而速度换接时大量油液通过该处将使机床工作部件产生突然前冲现象。因此它不宜用于在工作过程中的速度换接,只可用在速度预选的场合。 图b所示为两调速阀串联的速度换接回路。当主换向阀D左位接人系统时,调速阀B被换向阀C短接;输入液压缸的流量由调速阀A控制。当阀C右位接入回路时,由于通过调速阀B的流量调得比A小,所以输入液压缸的流量由调速阀B控制。在这种回路中的调速阀A一直处于工作状态,它在速度换接时限制着进入调速阀B的流量,因此它的速度换接平稳性较好,但由于油液经过两个调速阀,所以能量损失较大。三、多缸控制回路 在液压系统中,如果由一个油源给多个液压缸输送压力油,这些液压缸会因压力和流量的

34、彼此影响而在动作上相互牵制,必须使用一些特殊的回路才能实现预定的动作要求,常见的这类回路主要有同步回路、顺序动作回路。1.同步回路: 在液压装置中常需使两个以上的液压缸做同步运动,理论上依靠流量控制即可达到,但若要作到精密的同步,则可采用比例式阀门或伺服阀配合电子感测元件、计算机来达成,以下将介绍几种基本的同步回路。(1)调速阀同步回路 图示为使用调速阀的同步回路,由于很难调整得使两个流量一致,所以精度较差。3)带补油装置的串联缸同步回路 两缸出现同步误差每次下行运动中都可消除, 故同步精度较高,一般用于负载较小系统 上图所示两个行程控制的顺序动作回路。其中图a所示为行程阀控制的顺序动作回路,

35、在图示状态下,A、B两液压缸活塞均在右端。当推动手柄,使阀C左位工作,缸A左行,完成动作;挡块压下行程阀D后,缸B左行,完成动作;手动换向阀复位后,缸A先复位,实现动作;随着挡块后移,阀D复位,缸B退回实现动作。至此,顺序动作全部完成。这种回路工作可靠,但动作顺序一经确定,再改变就比较困难,同时管路长,布置较麻烦。 图b所示为由行程开关控制的顺序动作回路,当阀E电磁铁得电换向时,缸A左行完成动作后,触动行程开关S1使阀F电磁铁得电换向,控制缸B左行完成动作,当缸B左行至触动行程开关S2使阀E电磁铁失电,缸A返回,实现动作后,触动S3使F电磁铁断电,缸B返回,完成动作,最后触动S4使泵卸荷或引起

36、其它动作,完成一个工作循环。这种回路的优点是控制灵活方便,但其可靠程度主要取决于电气元件的质量。  2)压力控制顺序动作回路:图示为一使用顺序阀的压力控制顺序动作回路。当换向阀左位接入回路且顺序阀D的调定压力大于液压缸A的最大前进工作压力时,压力油先进入液压缸A的左腔,实现动作;当液压缸行至终点后,压力上升, 压力油打开顺序阀D进入液压缸B的左腔,实现动作;同样地,当换向阀右位接人回路且顺序阀C的调定压力大于液压B的最大返回工作压力时,两液压缸则按和的顺序返回。显然这种回路动作的可靠性取决于顺序阀的性能及其压力调定值,即它的调定压力应比前一个动作的压力高出0.81.0Mpa,否则顺序

37、阀易在系统压力脉冲中造成误动作,由此可见,这种回路适用于液压缸数目不多、负载变化不大的场合。其优点是动作灵敏,安装连接较方便;缺点是可靠性不高,位置精度低。2.6液压系统设计2.7液压元器件的选择原则3.PLC程序设计3.1可编程控制器定义1. PLC定义:PLC是一种数字式的电子装置,它使用了可编程序的存储器以存储指令, 能完成逻辑、顺序、计时、计数和算术运算等功能,并通过数字或类似的输入输出模块,以控制各种机械或生产过程。 2. 可编程序控制器的发展趋势:(1)小型PLC向体积缩小、功能增强、速度加快、价格 低廉的方向发展,使之能更加广泛地取代继电器控制。(2)大中型PLC向大容量、高可靠

38、性、高速度、多功能、网络化的方向发展,使之能对大规模、复杂系统进行综合性的自动控制。 3. PLC的特点:(1)可靠性高、抗干扰能力强(2)编程简单、使用方便(3)设计、安 装容易,维护工作量少(4)功能完善、通用性强(5)体积小、能耗低(6)性能价格比高 4. PLC系统的基本特点是:可靠、方便、通用、价廉5. 可靠性高、抗干扰能力强原因:1)光电隔离措施2)滤波3)屏蔽 3.2可编程控制器的特点及选择原则可编程逻辑控制器具有以下鲜明的特点。1.使用方便,编程简单采用简明的梯形图、逻辑图或语句表等编程语言,而无需计算机知识,因此系统开发周期短,现场调试容易。另外,可在线修改程序,改变控制方案

39、而不拆动硬件。2.功能强,性能价格比高一台小型PLC内有成百上千个可供用户使用的编程元件,有很强的功能,可以实现非常复杂的控制功能。它与相同功能的继电器系统相比,具有很高的性能价格比。PLC可以通过通信联网,实现分散控制,集中管理。3.硬件配套齐全,用户使用方便,适应性强PLC产品已经标准化、系列化、模块化,配备有品种齐全的各种硬件装置供用户选用,用户能灵活方便地进行系统配置,组成不同功能、不同规模的系统。PLC的安装接线也很方便,一般用接线端子连接外部接线。PLC有较强的带负载能力,可以直接驱动一般的电磁阀和小型交流接触器。硬件配置确定后,可以通过修改用户程序,方便快速地适应工艺条件的变化。

40、4.可靠性高,抗干扰能力强传统的继电器控制系统使用了大量的中间继电器、时间继电器,由于触点接触不良,容易出现故障。PLC用软件代替大量的中间继电器和时间继电器,仅剩下与输入和输出有关的少量硬件元件,接线可减少到继电器控制系统的1/10-1/100,因触点接触不良造成的故障大为减少。PLC采取了一系列硬件和软件抗干扰措施,具有很强的抗干扰能力,平均无故障时间达到数万小时以上,可以直接用于有强烈干扰的工业生产现场,PLC已被广大用户公认为最可靠的工业控制设备之一。5.系统的设计、安装、调试工作量少PLC用软件功能取代了继电器控制系统中大量的中间继电器、时间继电器、计数器等器件,使控制柜的设计、安装

41、、接线工作量大大减少。PLC的梯形图程序一般采用顺序控制设计法来设计。这种编程方法很有规律,很容易掌握。对于复杂的控制系统,设计梯形图的时间比设计相同功能的继电器系统电路图的时间要少得多。PLC的用户程序可以在实验室模拟调试,输入信号用小开关来模拟,通过PLC上的发光二极管可观察输出信号的状态。完成了系统的安装和接线后,在现场的统调过程中发现的问题一般通过修改程序就可以解决,系统的调试时间比继电器系统少得多。6.维修工作量小,维修方便PLC的故障率很低,且有完善的自诊断和显示功能。PLC或外部的输入装置和执行机构发生故障时,可以根据PLC上的发光二极管或编程器提供的信息迅速地查明故障的原因,用

42、更换模块的方法可以迅速地排除故选型规则在可编程逻辑控制器系统设计时,首先应确定控制方案,下一步工作就是可编程逻辑控制器工程设计选型。工艺流程的特点和应用要求是设计选型的主要依据。可编程逻辑控制器及有关设备应是集成的、标准的,按照易于与工业控制系统形成一个整体,易于扩充其功能的原则选型所选用可编程逻辑控制器应是在相关工业领域有投运业绩、成熟可靠的系统,可编程逻辑控制器的系统硬件、软件配置及功能应与装置规模和控制要求相适应。熟悉可编程序控制器、功能表图及有关的编程语言有利于缩短编程时间,因此,工程设计选型和估算时,应详细分析工艺过程的特点、控制要求,明确控制任务和范围确定所需的操作和动作,然后根据

43、控制要求,估算输入输出点数、所需存储器容量、确定可编程逻辑控制器的功能、外部设备特性等,最后选择有较高性能价格比的可编程逻辑控制器和设计相应的控制系统。一、输入输出(I/O)点数的估算I/O点数估算时应考虑适当的余量,通常根据统计的输入输出点数,再增加10%20%的可扩展余量后,作为输入输出点数估算数据。实际订货时,还需根据制造厂商可编程逻辑控制器的产品特点,对输入输出点数进行圆整。二、存储器容量的估算存储器容量是可编程序控制器本身能提供的硬件存储单元大小,程序容量是存储器中用户应用项目使用的存储单元的大小,因此程序容量小于存储器容量。设计阶段,由于用户应用程序还未编制,因此,程序容量在设计阶

44、段是未知的,需在程序调试之后才知道。为了设计选型时能对程序容量有一定估算,通常采用存储器容量的估算来替代。存储器内存容量的估算没有固定的公式,许多文献资料中给出了不同公式,大体上都是按数字量I/O点数的1015倍,加上模拟I/O点数的100倍,以此数为内存的总字数(16位为一个字),另外再按此数的25%考虑余量。三、控制功能的选择该选择包括运算功能、控制功能、通信功能、编程功能、诊断功能和处理速度等特性的选择。1、运算功能简单可编程逻辑控制器的运算功能包括逻辑运算、计时和计数功能;普通可编程逻辑控制器的运算功能还包括数据移位、比较等运算功能;较复杂运算功能有代数运算、数据传送等;大型可编程逻辑

45、控制器中还有模拟量的PID运算和其他高级运算功能。随着开放系统的出现,在可编程逻辑控制器中都已具有通信功能,有些产品具有与下位机的通信,有些产品具有与同位机或上位机的通信,有些产品还具有与工厂或企业网进行数据通信的功能。设计选型时应从实际应用的要求出发,合理选用所需的运算功能。大多数应用场合,只需要逻辑运算和计时计数功能,有些应用需要数据传送和比较,当用于模拟量检测和控制时,才使用代数运算,数值转换和PID运算等。要显示数据时需要译码和编码等运算。2、控制功能控制功能包括PID控制运算、前馈补偿控制运算、比值控制运算等,应根据控制要求确定。可编程逻辑控制器主要用于顺序逻辑控制,因此,大多数场合

46、常采用单回路或多回路控制器解决模拟量的控制,有时也采用专用的智能输入输出单元完成所需的控制功能,提高可编程逻辑控制器的处理速度和节省存储器容量。例如采用PID控制单元、高速计数器、带速度补偿的模拟单元、ASC码转换单元等。3、通信功能大中型可编程逻辑控制器系统应支持多种现场总线和标准通信协议(如TCP/IP),需要时应能与工厂管理网(TCP/IP)相连接。通信协议应符合ISO/IEEE通信标准,应是开放的通信网络。可编程逻辑控制器系统的通信接口应包括串行和并行通信接口、RIO通信口、常用DCS接口等;大中型可编程逻辑控制器通信总线(含接口设备和电缆)应1:1冗余配置,通信总线应符合国际标准,通

47、信距离应满足装置实际要求。可编程逻辑控制器系统的通信网络中,上级的网络通信速率应大于1Mbps,通信负荷不大于60%。可编程逻辑控制器系统的通信网络主要形式有下列几种形式:1)、PC为主站,多台同型号可编程逻辑控制器为从站,组成简易可编程逻辑控制器网络;2)、1台可编程逻辑控制器为主站,其他同型号可编程逻辑控制器为从站,构成主从式可编程逻辑控制器网络;3)、可编程逻辑控制器网络通过特定网络接口连接到大型DCS中作为DCS的子网;4)、专用可编程逻辑控制器网络(各厂商的专用可编程逻辑控制器通信网络)。为减轻CPU通信任务,根据网络组成的实际需要,应选择具有不同通信功能的(如点对点、现场总线、)通

48、信处理器。4、编程功能离线编程方式:可编程逻辑控制器和编程器公用一个CPU,编程器在编程模式时,CPU只为编程器提供服务,不对现场设备进行控制。完成编程后,编程器切换到运行模式,CPU对现场设备进行控制,不能进行编程。离线编程方式可降低系统成本,但使用和调试不方便。在线编程方式:CPU和编程器有各自的CPU,主机CPU负责现场控制,并在一个扫描周期内与编程器进行数据交换,编程器把在线编制的程序或数据发送到主机,下一扫描周期,主机就根据新收到的程序运行。这种方式成本较高,但系统调试和操作方便,在大中型可编程逻辑控制器中常采用。五种标准化编程语言:顺序功能图(SFC)、梯形图(LD)、功能模块图(

49、FBD)三种图形化语言和语句表(IL)、结构文本(ST)两种文本语言。选用的编程语言应遵守其标准(IEC6113123),同时,还应支持多种语言编程形式,如C,Basic等,以满足特殊控制场合的控制要求。5、诊断功能可编程逻辑控制器的诊断功能包括硬件和软件的诊断。硬件诊断通过硬件的逻辑判断确定硬件的故障位置,软件诊断分内诊断和外诊断。通过软件对PLC内部的性能和功能进行诊断是内诊断,通过软件对可编程逻辑控制器的CPU与外部输入输出等部件信息交换功能进行诊断是外诊断。可编程逻辑控制器的诊断功能的强弱,直接影响对操作和维护人员技术能力的要求,并影响平均维修时间。6、处理速度可编程逻辑控制器采用扫描方式工作。从实时性要求来看,处理速度应越快越好,如果信号持续时间小于扫描时间,则可编程逻辑控制器将扫描不到该信号,造成信号数据的丢失。处理速度与用户程序的长度、CPU处理速度、软件质量等有关。可编程逻辑控制器接点的响应快、速度高,每条二进制指令执行时间约0.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论