高频信号发生器的设计报告_第1页
高频信号发生器的设计报告_第2页
高频信号发生器的设计报告_第3页
高频信号发生器的设计报告_第4页
高频信号发生器的设计报告_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、武汉理工大学高频电子线路课程设计电子线路课程设计报告设计课题:高频信号发生器的设计 专业班级:12信工2班 小组成员:钱佳伟 指导教师:朱其祥 设计时间:2014.12.22 目录摘要I1 选题的意义和目的12 振荡器简介12.1 振荡器简介12.2 振荡器组成23 常见振荡器及工作原理33.1 三点式振荡器33.1.1 电容三点式振荡器33.1.2 电感三点式振荡器43 方案设计63.1考毕兹振荡器63.2串联型改进电容三端式振荡器(克拉泼电路)73.3西勒振荡器94 高频信号发生器电路设计114.1 主要性能指标114.2 电路选择114.3原理图设计114.3.1 电路结构114.3.2

2、 静态工作点的设置124.3.3 选管134.3.4振荡回路元件的确定134.4 性能测试144.5 调试中的问题145 收获体会166 参考文献17附表:本科生基础强化训练成绩评定表18摘要在电子线路中,除了要有对各种电信号进行放大的电子线路外,还需要有能在没有激励信号的情况下产生周期信号的电子电路,这种在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅度的交变能量的电子电路称为高频信号发生器。高频信号发生器主要用来向各种电子设备和电路提供高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。例如,测试各类高频接收机的工作特性,便是高频信号发生器一个重要的用

3、途。在电路结构上,高频信号发生器和高频发射机很相似。高频信号发生器主要是产生高频正弦震荡波,故电路主要是由高频振荡电路构成。振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。为此,振荡器是电子技术领域中最基本的电子线路,也是从事电子技术工作人员必须要熟练掌握的基本电路。本次课设设计了不同种类型的高频振荡器,介绍了设计步骤,比较了各种设计方法的优缺点,总结了不同振荡器的性能特征。并通过Multisim仿真验证比较。在multisim环境下进行了仿真与调试,实现了设计目标。关键字:高频信号发生器 、高频振荡器 、 Multisim仿真211 选题的意义和目的在电子线路中,除了要有对各种电信

4、号进行放大的电子线路外,还需要有能在没有激励信号的情况下产生周期信号的电子电路,这种在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅度的交变能量的电子电路称为高频信号发生器。高频信号发生器主要用来向各种电子设备和电路提供高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。例如,测试各类高频接收机的工作特性,便是高频信号发生器一个重要的用途。在电路结构上,高频信号发生器和高频发射机很相似。高频信号发生器主要是产生高频正弦震荡波,故电路主要是由高频振荡电路构成。振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。为此,振荡器是电子技术领域中最基本的电子线

5、路,也是从事电子技术工作人员必须要熟练掌握的基本电路。2 振荡器简介2.1 振荡器简介振荡器(英文:oscillator)是一种能量转换装置将直流电能转换为具有一定频率的交流电能。其构成的电路叫振荡电路。振荡器的种类很多,根据工作原理可以分为反馈型振荡器和负阻型振荡器。根据选频网络采用的器件可分为LC振荡器、晶体振荡器、变压器耦合振荡器等。振荡器主要分为RC,LC振荡器和晶体振荡器 1RC振荡器采用RC网络作为选频移相网络的振荡器统称为RC正弦振荡器,属音频振荡器。 2LC振荡器采用LC振荡回路作为移相和选频网络的正反馈振荡器称为LC振荡器。 LC振荡器的分类: 变压器耦合 单管LC正弦振荡器

6、 差分对管LC正弦振荡器 三点式 电容三点式(考毕兹)振荡器 电感三点式(哈特莱)振荡器 改进三点式 克拉泼振荡器 西勒振荡器 差分对管振荡器 3晶体振荡器 振荡器的振荡频率受石英晶体控制的振荡器。2.2 振荡器组成振荡器最基本组成部分1 三极管放大器;(起能量控制作用)2 正反馈网络;(将输出信号反馈一部分至输入端)3 选频网络;(用以选取所需要的振荡频率,以使振荡器能够在单一频率下振荡,从而获得需要的波形)。其框图如图1所示放大电路选频网络正反馈网络输出图1-1 振荡器框图3 常见振荡器及工作原理3.1 三点式振荡器反馈式正弦波振荡器有RC、LC和晶体振荡器三种形式,电路主要由放大网络、选

7、频回路和反馈网络三个部分构成。本实验中,我们研究的主要是LC三点式振荡器。所谓三点式振荡器,是晶体管的三个电极(B、E、C),分别与三个电抗性元件相连接,形成三个接点,故称为三点式振荡器,其基本电路如图2-1所示:图2-1三点式振荡器的基本电路根据相位平衡条件,图2-1 (a)中构成振荡电路的三个电抗元件,X1、X2必须为同性质的电抗,X3必须为异性质的电抗,若X1和X2均为容抗,X3为感抗,则为电容三点式振荡电路(如图2-1 (b));若X2和X1均为感抗,X3为容抗,则为电感三点式振荡器(如图2-1 (c))。由此可见,为射同余异。3.1.1 电容三点式振荡器电容三点式振荡器的基本电路如图

8、2-2所示图2-2电容三点式振荡器由图可见:与发射极连接的两个电抗元件为同性质的容抗元件C1和C2;与基极和集电极连接的为异性质的电抗元件L,根据前面所述的判别准则,该电路满足相位条件。 其工作过程是:振荡器接通电源后,由于电路中的电流从无到有变化,将产生脉动信号,因任一脉冲信号包含有许多不同频率的谐波,因振荡器电路中有一个LC谐振回路,具有选频作用,当LC谐振回路的固有频率与某一谐波频率相等时,电路产生谐振。虽然脉动的信号很微小,通过电路放大及正反馈使振荡幅度不断增大。当增大到一定程度时,导致晶体管进入非线性区域,产生自给偏压,使放大器的放大倍数减小,最后达到平衡,即AF=1,振荡幅度就不再

9、增大了。于是使振荡器只有在某一频率时才能满足振荡条件,于是得到单一频率的振荡信号输出。该振荡器的振荡频率为:反馈系数F为: 若要它产生正弦波,必须满足F= 1/2-1/8,太小不容易起振,太大也不容易起振。一个实际的振荡电路,在F确定之后,其振幅的增加主要是靠提高振荡管的静态电流值。但是如静态电流取得太大,振荡管工作范围容易进入饱和区,输出阻抗降低使振荡波形失真,严重时,甚至使振荡器停振。所以在实用中,静态电流值一般ICO=0.5mA-4mA。电容三点式振荡器的优点是:1)振荡波形好。2)电路的频率稳定度较高。工作频率可以做得较高,可达到几十MHz到几百MHz的甚高频波段范围。 电路的缺点:振

10、荡回路工作频率的改变,若用调C1或C2实现时,反馈系数也将改变。使振荡器的频率稳定度不高。3.1.2 电感三点式振荡器电感三点式振荡器电路如图2-3所示图2-3 电感三点式振荡电路图2-3是电感三点式振荡电路的原理图。由图可见,这种电路的LC并联谐振电路中的电感有首端、中间抽头和尾端三个端点,其交流通路分别与放大电路的集电极、发射极(地)和基极相连,反馈信号取自电感L2上的电压,因此,习惯上将图2-3所示电路称为电感三点式LC振荡电路,或电感反馈式振荡电路。电感三点式振荡电路分析方法与电容三点式振荡器类似。相位平衡条件:根据"射同基反"的原则,也可以判别三点式振荡电路的相位

11、平衡条件,方法是先画出交流等效电路如图2-3所示,显然该电路符合"射同基反"的原则,因此满足相位平衡条件。可求得电感三点式振荡器的振幅起振条件和振荡频率。振荡频率为:其中L=L1+L2+2M,M为互感系数。电感三点式振荡电路的特点:(1)工作频率范围为几百kHz几MHz;(2)反馈信号取自于L2, 其对f0的高次谐波的阻抗较大,因而引起振荡回路的谐波分量增大,使输出波形不理想。3 方案设计根据本次课设的要求,采用电容三点式振荡器,输出波形好,频率稳定度高。电容三点式课分为三种:考毕兹振荡器、克拉泼振荡器、西勒振荡器。3.1考毕兹振荡器电容三点式振荡器(又称考毕兹振荡器)如图

12、2所示。图 3-1考毕兹振荡器理论计算振荡器的频率为:观察到的振荡波形如图3-2所示从波形看出其震荡极不稳定,测试其波形频率为f6.5MHz调解C1C2改变频率时,反馈系数也改变。由于极间电容对反馈振荡器的回路电抗均有影响,所以对振荡器频率也会有影响。而极间电容受环境温度、电源电压等因素的影响较大,所以电容三点式振荡器的频率稳定度不高。为克服共基电容三点式振荡器的缺点,可对其进行改进,即克拉泼电路和西勒电路。图3-2考毕兹振荡器输出信号波形3.2串联型改进电容三端式振荡器(克拉泼电路)电容三点式改进型“克拉泼振荡器”如图3-3所示。图3-3 克拉泼振荡电路电路特点是在共基电容三点式振荡器的基础

13、上,用一电容C3,串联于电感L支路。 功用主要是以增加回路总电容和减小管子与回路间的耦合来提高振荡回路的标准性。使振荡频率的稳定度得以提高。 因为C3为可调电容远小于C1或C2,所以电容串联后的等效电容约为C3。电路的振荡频率为:与共基电容三点式振荡器电路相比,在电感L支路上串联一个电容。但它有以下特点:1、振荡频率改变可不影响反馈系数;2、振荡幅度比较稳定。3、电路中C3为可变电容,调整它即可在一定范围内调整期振荡频率。但C3不能太小,否则导致停振,所以克拉泼振荡器频率覆盖率较小,仅达1.2-1.4; 为此,克拉泼振荡器适合与作固定频率的振荡器 。观察到的振荡波形如图3-4所示图3-4克拉波

14、振荡器输出信号波形改进后的电路波形比原电容三点式振荡器稳定度高了很多,这是因为晶体管一部分接入的形式与回路连接,接入系数p越小,耦合越弱。减弱了晶体管对回路的影响。3.3西勒振荡器电容三点式的改进型“西勒振荡器”如图3-5所示图3-5西勒振荡器电路特点是在克拉泼振荡器的基础上,用一电容C4,并联于电感L两端。功用是保持了晶体管与振荡回路弱藕合,振荡频率的稳定度高,调整范围大。电路的振荡频率为: 特点:1.振荡幅度比较稳定; 2.振荡频率可以比较高,如可达千兆赫;频率覆盖率比较大,可达1.6-1.8;所以在一些短波、超短波通信机,电视接收机中用的比较多。 频率稳定度是振荡器的一项十分重要技术指标

15、,它表示在一定的时间范围内或一定的温度、湿度、电压、电源等变化范围内振荡频率的相对变化程度,振荡频率的相对变化量越小,则表明振荡器的频率稳定度越高。改善振荡频率稳定度,从根本上来说就是力求减小振荡频率受温度、负载、电源等外界因素影响的程度,振荡回路是决定振荡频率的主要部件。因此改善振荡频率稳定度的最重要措施是提高振荡回路在外界因素变化时保持频率不变的能力,这就是所谓的提高振荡回路的标准性。提高振荡回路标准性除了采用稳定性好和高Q的回路电容和电感外,还可以采用与正温度系数电感作相反变化的具有负温度系数的电容,以实现温度补偿作用。输出信号的幅值、频率等用实时监测法测试,信号波形如图3-6所示,调整

16、C6、C3观测震荡信号的波形和频率变化。图3-6西勒振荡器输出信号波形4 高频信号发生器电路设计4.1 主要性能指标振荡频率 频率稳定度 输出幅度 输出频率范围 4.4MHz f5.3MHz4.2 电路选择从以上的讨论,分析不同振荡电路的性能指标及电路复杂程度。采用西勒振荡电路,因为西勒振荡器的接入系数与克拉泼振荡器的相同,由于改变频率主要通过C4完成的,C4的改变并不影响接入系数p,所以波段内输出辅导较平稳。而且C4改变,频率变化较明显,故西勒振荡器的频率覆盖系数较大,可达1.61.8。4.3原理图设计4.3.1 电路结构总的电路结构如图4-1所示。电路由三部分组成1 三极管放大器;(起能量

17、控制作用)2 正反馈网络;(由三点式回路组成)3 选频网络;(由三点式回路的谐振特性完成选频功能)。图4-1 高频信号发生器原理图4.3.2 静态工作点的设置合理地选择振荡器的静态工作点,对振荡器的起振,工作的稳定性,波形质量的好坏有着密切的关系。般小功率振荡器的静态工作点应选在远离饱和区而靠近截止区的地方。根据上述原则,一般小功率振荡器集电极电流ICQ大约在0.8-4mA之间选取,故本实验电路中:选ICQ=2mA VCEQ=6V =100则有为提高电路的稳定性Re值适当增大,取Re=1K则Rc2K 因:UEQ=ICQ·RE 则: UEQ =2mA×1K=2V 因: IBQ

18、=ICQ/ 则: IBQ =2mA/100=0.02mA 一般取流过Rb2的电流为5-10IBQ , 若取10IBQ 因: 则: 取标称电阻12K。因: 为调整振荡管静态集电极电流的方便,Rb1由27K电阻与27K电位器串联构成。4.3.3 选管由于高频振荡器的振荡频率较高,在选管时应注意选超高频小功率三极管。特征频率fT也要比音频振荡管的要求高。通常选fT> (3-10) f0 (f0为振荡器的中心频率)。fT高则管子的高频性能好,晶体管内部相移小,有利于稳频。在高频工作时,振荡器的增益仍较大,易于起振。本次课设选用2N2222型号的晶体管,满足了振荡器的频率和功率要求。4.3.4振荡

19、回路元件的确定回路中的各种电抗元件都可归结为总电容C和总电感L两部分。确定这些元件参量的方法,是根据经验先选定一种,而后按振荡器工作频率再计算出另一种电抗元件量。从原理来讲,先选定哪种元件都一样,但从提高回路标准性的观点出发,以保证回路电容Cp远大于总的不稳定电容Cd原则,先选定Cp为宜。若从频率稳定性角度出发,回路电容应取大一些,这有利于减小并联在回路上的晶体管的极间电容等变化的影响。但C不能过大,C过大,L就小,Q值就会降低,使振荡幅度减小,为了解决频稳与幅度的矛盾,通常采用部分接入。反馈系数F=C1/C2,不能过大或过小,适宜1/81/2。因振荡器的工作频率为: 当LC振荡时,f0=6M

20、Hz L10H本电路中,则回路的谐振频率fo主要由C3、C4决定,即有 取C3 =120pf,C4=51pf(用33Pf与5-20Pf的可调电容并联),因要遵循C1,C2>>C3,C4,C1/C2=1/81/2的条件,故取C1=200pf,则C2=510pf。对于晶体振荡,只需和晶体并联一可调电容进行微调即可。为了尽可能地减小负载对振荡电路的影响,振荡信号应尽可能从电路的低阻抗端输出。例如发射极接地的振荡电路,输出宜取自基极;如为基级接地,则应从发射极输出。如要改变频率,只要改变C3的大小。当C3为220pF乘以20%时,电路图如下:输出频率为:5.3MHz.当C3为220pF乘以

21、100%时,电路图如下: 输出频率为:4.4MHZ4.4 性能测试电路仿真波形如图4-2所示图4-2 总体电路波形从波形可以看出,电路起振,波形比较稳定,频率也满足了设计的要求。通过调节可变电容的值实现振荡频率的调节。4.5 调试中的问题振荡电路接通电源后,有时不起振,或者在外界信号强烈触发下才起振(硬激励),在波段振荡器中有时只在某一频段振荡,而在另一频段不振荡等。所有这些现象无非是没有满足相位平衡条件或振幅平衡条件。如果在全波段内不振荡,首先要看相位平衡条件是否满足。对三端振荡电路要看是否满足对应的相位平衡判断标准。此外,还要在振幅平衡条件所包含的各种因素中找原因。1、静态工作点选的太小。2、电源电压过底,使振荡管放大倍数太小。3、负载太重,振荡管与回路间耦合过紧,回路Q值太低。4、回路特性阻抗或介入系数pce太小,使回路谐振阻抗RO太低。5、反馈系数kf太小,不易满足振幅平衡条件。但kf并非越大越好,应适当选取。有时在某一频段内高频端起振,而低频端不起振,这多半是在用调整回路电容来改变振荡频率的电路中,低端由于C增大而L/C下降,致使写真阻抗降低所起。反之,有时低端振高端不振,原因可能有:1、选用晶体管fT不够高。2、管的电流放大倍数太小。低端已处于起振的临界

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论