![农科院—分子遗传学_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-11/11/08ad5dbc-b7c7-4c1d-9dec-9982b45a57b7/08ad5dbc-b7c7-4c1d-9dec-9982b45a57b71.gif)
![农科院—分子遗传学_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-11/11/08ad5dbc-b7c7-4c1d-9dec-9982b45a57b7/08ad5dbc-b7c7-4c1d-9dec-9982b45a57b72.gif)
![农科院—分子遗传学_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-11/11/08ad5dbc-b7c7-4c1d-9dec-9982b45a57b7/08ad5dbc-b7c7-4c1d-9dec-9982b45a57b73.gif)
![农科院—分子遗传学_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-11/11/08ad5dbc-b7c7-4c1d-9dec-9982b45a57b7/08ad5dbc-b7c7-4c1d-9dec-9982b45a57b74.gif)
![农科院—分子遗传学_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-11/11/08ad5dbc-b7c7-4c1d-9dec-9982b45a57b7/08ad5dbc-b7c7-4c1d-9dec-9982b45a57b75.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、农科院分子遗传学2002年博士入学考试题名词解释(每个4分,共计40分)1、反义RNA:反义RNA是指与mRNA互补的RNA分子, 也包括与其它RNA互补的RNA分子。由于核糖体不能翻译双链的RNA,所以反义RNA与mRNA特异性的互补结合, 即抑制了该mRNA的翻译。通过反义RNA控制mRNA的翻译是原核生物基因表达调控的一种方式,最早是在E.coli 的大肠杆菌素的Col E1质粒中发现的,许多实验证明在真核生物中也存在反义RNA。近几年来通过人工合成反义RNA的基因, 并将其导入细胞内转录成反义RNA, 即能抑制某特定基因的表达,阻断该基因的功能, 有助于了解该基因对细胞生长和分化的作用
2、。同时也暗示了该方法对肿瘤实施基因治疗的可能性。 反义RNA的来源:细胞中反义RNA的来源有两种途径第一是反向转录的产物,在多数情况下, 反义RNA是特定靶基因互补链反向转录产物, 即产生mRNA和反义RNA的DNA是同一区段的互补链。第二种来源是不同基因产物,如OMPF基因是大肠杆菌的膜蛋白基因,与透性有关,其反义基因MICFZE则为另一基因。反义RNA的分类和作用机制:反义RNA的分类和作用机制:下表总结了原核细胞内天然存在的11种反义RNA。这些反义RNA按其作用机制可经分为三大类。类:这类反义RNA直接作用于其靶mRNA的SD序列和/或编码区,引起翻译的直接抑制(A类)或与靶mRNA结
3、合后引起该双链RNA分子对RNA酶的敏感性增加,使其降解(B类)。类:这类反义RNA与mRNA的SD序列的上游非编码区结合,从而抑制靶mRNA的翻译功能。其作用机制尚不完全清楚,可能是反义RNA与靶mRNA的上游序列结合后会引起核糖体结合位点区域的二级结构发生改变,因而阻止了核糖体的结合。类:这类反义RNA可直接抑制靶mRNA的转录。ticRNA(transcription inhibitory complementary RNA)是大肠杆菌中CAP蛋白(cAMP结合蛋白)的mRNA的反义RNA。ticRNA的基因的启动子可被cAMP-CAP复合物所激活,从CAP mRNA的转录起始位点上游3
4、个核苷酸处开始,以CAP mRNA的模板DNA链的互补链为模板,合成ticRNA。ticRNA具体长度不清楚,但是它是5'端一段正好和CAP mRNA的5'端有不完全的互补,可以形成双链的RNA杂交体。而在CAP mRNA上紧随杂交区之后的是一段约长11bp的A,U丰富区。这样的结构十分类似于不依赖性的转录终止子的结构,从而CAP mRNA的转录刚刚开始不久后即迅速终止。从这个例子中我们可以看到CAP蛋白合成的自我调节作用。当CAP合成达一定量后,即可与cAMP结合成cAMP-CAP复合物。再激活ticRNA的启动子转录出ticRNA,反过来抑制CAP-mRNA的合成。 反义R
5、NA的功能:在原核生物中反义RNA具有多种功能,例如调控质粒的复制及其接合转移,抑制某些转位因子的转位,对某些噬菌体溶菌-溶源状态的控制等。下文仅举数例。1.调控细菌基因的表达:反义RNA对编码CAP的基因的调控作用已如前述。这里再介绍一下micF RNA对ompF基因的表达的调控。ompF蛋白质是大肠杆菌的外膜蛋白的主要成分这一。micF RNA是从另一基因(ompC基因)附近的DNA序列转录而来,和o-mpFn RNA的5'端有70%的序列互补,因此在体外micF RNA可以抑制ompF mRNA的翻译。但是这种抑制作用在体内是否重要尚有疑问,因为缺失micF基因的菌株其ompF蛋
6、白的表达只受到轻微的影响。2.噬菌体溶菌/溶源状态的控制:反义RNA也参与了和P22噬菌体的溶菌/溶源状态的控制。P22噬菌体编码一种抗阻遏蛋白Ant,它可以抑制许多样噬菌体的阻遏蛋白与DNA的结合。这对于刚刚感染细胞的P22建立样原噬菌体(prophage)是有益的。但是Ant必须在严格的控制下,否则Ant的过分表达必将阻止溶源状态的建立,而成为溶菌性的噬菌体。Ant蛋白质表达的控制是利用反义RNA(sarRNA)能与ant mRNA的翻译起源区互补结合,从而抑制ant mRNA翻译成Ant蛋白。在噬菌体中c蛋白控制着溶菌或溶源状态的选择。c蛋白可以激活Pre启动子,该启动子控制的基因是噬菌
7、体整合作用所必须的,且同时能抑制噬菌体的复制。c蛋白的另一功能是延缓晚期基因的表达,其作用机制是c蛋白激活PaQ的启动子,转录出PaQRNA。PaQRA是编码Q蛋白的mRNA的反义RNA。因此,PaQRNA能与QmRNA配对杂交而抑制其翻译,而Q蛋白早已知道是晚期基因表达的激活蛋白。c基因本身的表达还受到称为oopRNA的反义RNA的调控。oopRNA与c基因的3'端互补,但其具体作用机制尚不清楚。3.IS10转位作用的抑制:outRNA是一种反义RNA,可以和IS10编码的转位酶mRNA(INRNA)5'端结合而抑制其翻译,当细胞内只有一个考贝IS10时,只能生成很少量的ou
8、tRNA,故转位酶仍可生成。但当IS10的考贝数增多时,outRNA愈来愈多,其控制作用亦明显增强,所以称为多考贝抑制现象。这种现象可以防止IS10的过量堆积引起的细胞损害。 人工合成构建反义RNA既然反义RNA在原核生物中对基因表达起着重要的调控作用,那末人工设计在天然状态下不存在的反义RNA来调节靶基因的表达,想必也是可能的。这已在不少实验中得到证实。1.由于目前对靶mRNA的SD序列的上游区的结构了解甚少,因此,在要设计类反义RNA用于和靶mRNASD序列上游区结合,以期达到调节该mRNA翻译的目的是比较困难的。2.类反义RNA是和mRNA的起始处结合而形成类似-不依赖性的转录终止子而使
9、转录水平上抑制靶基因的表达。因此,要设法在靶mRNA上找到一段连续的U序列,就可以设计出反义RNA,与该U序列上游的mRNA链互补,以形成-不依赖性终止子。理想的作用位点是在靶mRNA的5'端上游的非编码区,以免受核糖体的影响。3.只要靶基因的核苷酸顺序已经知道,就可以人工设计出类反义RNA。有时还可设计同时具有类和类反义RNA功能的反义RNA。我们还可以设计出天然存在的反义RNA的反义RNA来。这样就可以拮抗原始反义RNA对靶mRNA的抑制作用。而达到激活或加强某个靶基因的表达的目的。然而并不是所有的mRNA对其相应的类反义RNA都敏感。例如,有的mRNA寿命很短,只有1-2分钟,它
10、们和反义RNA结合的机会较少,因而就较不敏感。反之,另一些mRNA则很稳定,寿命可达十多分种,则其对相应的反义RNA的抑制作用就很敏感。此外,反义RNA本身的稳定性有很大的实际意义。显然,稳定的反义RNA对靶mRNA的调节作用比不稳定的反义RNA要好。使反义RNA分子稳定的方法如下:1反义RNA3'端带有茎环结构或类似-不依赖性终止子结构时,可以稳定RNA分子。2Gorski等还发现在T4噬菌体的基因32mRNA的5'端上游的茎环结构及其附近的序列亦可稳定RNA分子。所以在设计反义RNA基因时,最好将产生3'及5'端这种二级结构的序列克隆在反义RNA基因的两端。
11、Hirashima等1986年发现,针对靶mRNA的SD序列和AUG区域的反义RNA,要比单纯对编码区域的反义RNA更为有效。1989年Hirashima又发现,针对SD序列和它的上游区域(但不包括AUG)的反义RNA更为有效。在真核生物中,针对5'端非编码区的反义RNA更有效。但也有实验表明针对第一内含子的反义RNA也同样有效。现在设计反义RNA基因是时应注意之点总结如下:1长的反义RNA并不一定比短的反义RNA更为有效。2在原核生物中针对SD序列及其附近区域的反义RNA可能更有效。 3在真核生物中,对应于5'端非编码区的反义RNA可能比针对编码区的反义RNA更有效。 4尽量
12、避免在反义RNA分子中出现自我互补的二级结构。 5设计的反义RNA分子中不应有AUG或开放读框,否则该反义RNA亦会与核糖体结合而影响其与靶mRNA的配对结合。 6进一步还可以将带有ribozyme结构的RNA连在反义RNA的3'端尾上,当反义RNA与靶mRNA杂交后,即可利用其酶活性来降解靶mRNA。此外,为了增强反义RNA的作用,还可以采取一些额外措施,例如:1由于反义RNA对靶mRNA的抑制作用有剂量依赖性,所以在构建反义RNA基因时,要选择强的、可以诱导的启动子以增强反义RNA本身的表达。2构建许多个反义RNA基因串连在一起,以得到线性重复的多拷贝基因,对提高反义RNA的表达也
13、有利。3RNA酶可以降解RNA:RNA杂交体,所以在构建反义RNA基因时,可将RNA酶的基因也同时转化到靶细胞中并进行表达。这样,当反义RNA与靶mRNA结合后,RNA酶即可将其降解。这显然有利于反义RNA的抑制作用。近年来,有关反义RNA的研究进展迅速,已经应用到抗病毒感染,研究癌基因的作用机制,探索肿瘤治疗的可行途径等方面。在今后一段时间内,有关反义RNA的研究肯定将会有更加迅速的进展和更广阔的应用前景。反义RNA技术:随着分子生物学和遗传工程的发展,基因治疗应运而生,反义技术是其中一种,它的基础是根据核酸杂交原理设计针对特定靶序列的反义核酸,从而抑制特定基因的表达,包括反义RNA、反义D
14、NA及核酶(Ribozyme),它们通过人工合成和生物合成获得。(一)反义RNA,根据反义RNA的作用机制可将其分为3类:类反义RNA直接作用于靶mRNA的S D序列和(或)部分编码区,直接抑制翻译,或与靶mRNA结合形成双链RNA,从而易被RNA酶 降解;类反义RNA与mRNA的非编码区结合,引起mRNA构象变化,抑制翻译;类反义RNA则直接抑制靶mRNA的转录。 (二)反义DNA是指一段能与特定的DNA或RNA以碱基互补配对的方式结合,并阻止其转录和翻译的短核酸片段,主要指反义寡核苷酸,因更具药用价值而倍受重视。(三)核酶(ribozyme)是具有酶活性的RNA,主要参加RNA的加工与成熟
15、。天然核酶可分为四类:(1)异体催化剪切型,如RNaseP;(2)自体催化的剪切型,如植物类病毒、拟病毒和卫星RNA;(3)第一组内含子自我剪接型,如四膜虫大核26SrRNA;(4)第二组内含子自我剪接型。利用反义技术研制的药物称反义药物。反义药物作用于产生蛋白的基因,因此可广泛应用于多种疾病的治疗,如传染病、炎症、心血管疾病及肿瘤等。与传统药物比较反义药物更具选择性及效率,因此也更高效低毒。基于上述特点反义药物已成为药物研究和开发的热点。而且反义技术还可以应用于生物科学的基础研究。2、核酶 核酶一词用于描述具有催化活性的RNA, 即化学本质是核糖核酸(RNA), 却具有酶的催化功能。核酶的作
16、用底物可以是不同的分子, 有些作用底物就是同一RNA分子中的某些部位。核酶的功能很多,有的能够切割RNA, 有的能够切割DNA, 有些还具有RNA 连接酶、磷酸酶等活性。与蛋白质酶相比,核酶的催化效率较低,是一种较为原始的催化酶。核酶(ribozyme)是具有催化功能的RNA分子。核酶又称核酸类酶、酶RNA、类酶RNA。反应大多数核酶通过催化转磷酸酯和磷酸二酯键水解反应参与RNA自身剪切、加工过程。发现美国科学家T.Cech和S.Altman发现了核酶(ribozyme)。最早发现大肠杆菌RNaseP的蛋白质部分除去后,在体外高浓度Mg2+存在下,与留下的RNA部分(MIRNA)具有与全酶相同
17、的催化活性。后来发现四膜虫L19RNA在一定条件下能专一地催化寡聚核苷酸底物的切割与连接,具有核糖核酸酶和RNA聚合酶的活性。影响核酶的发现对于所有酶都是蛋白质的传统观念提出了挑战。1989年,核酶的发现者T.Cech和S. Altman被授予 诺贝尔化学奖3、hnRNA:heterogeneous nuclear核内不均一RNA 为存在于真核生物细胞核中的不稳定、大小不均的一组高分子RNA之总称。在核内主要存在于核仁的外侧。认为hnRNA多属信使RNA(mRNA)之先驱体,包括各种基因的转录产物及其成为mRNA前的各中间阶段的分子,在5末端多附有间隙结构,而3的末端附有多聚腺苷酸聚合酶分子。
18、这些hnR-NA在受到加工之后,移至细胞质,作为mRNA而发挥其功能。大部分的hnRNA在核内与各种特异的蛋白质形成复合体而存在着4、基因组Genome,一般的定义是单倍体细胞中的全套染色体为一个基因组,或是单倍体细胞中的全部基因为一个基因组。可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。因此,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。说的更确切些,核基因组是单倍体细胞核内的全部 DNA分子;线粒体基因组则是一个线粒体所包含的全部DNA分子;叶绿体基因组则是一个叶绿体所包含的全部DNA分子。 遗传学名词第二版对“基因组”的释义:单倍体细胞核、细
19、胞器或病毒粒子所含的全部DNA分子或RNA分子。现代遗传学家认为,基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。基因是生命遗传的基本单位。人类只有一个基因组,大约有5-10万个基因。人类基因组计划是美国科学家于1985年率先提出的,旨在阐明人类基因组30亿个碱基对的序列,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我5、因子因子就是丁型肝炎病毒HDV,是肝细胞核内一种新的病
20、毒抗原。它是一种缺陷病毒,必须在HBV(乙肝病毒)或其他嗜肝DNA病毒的辅助下(需要HBV的表体蛋白)进入肝细胞才能复制增殖。Ty因子是一大类转座子,长6.3kb,两端各有一段长334bp的顺向重复序列,称为成分。1977年意大利学者Rizzetto用免疫荧光法在慢性乙型肝炎病人的肝细胞核内发现一种新的病毒抗原,并称为因子(delta agent)。它是一种缺陷病毒,必须在HBV或其他嗜肝DNA病毒的辅助下才能复制增殖,现已正式命名为丁型肝炎病毒 (hepatitis D virus,HDV)。HDV体形细小,直径3537nm,核心含单股负链共价闭合的环状RNA和HDV抗原(HDAg),其外包
21、以HBV的HBsAg。 6、衰减子:attenuator细菌E.coli的trp操纵子中第一个结构基因与启动序列P之间有一衰减子区域。Trp操纵子的序列1中有两个色氨酸密码子,当色氨酸浓度很高时,核蛋白体(核糖体)很快通过编码序列1,并封闭序列2,这种与转录偶联进行的翻译过程导致序列3、4形成一个不依赖(rho)因子的终止结构-衰减子。(转录衰减是原核生物特有的调控机制)。 8、Z型DNA(ZDNA)Z-DNA,Z-DNA又称Z型DNA,是DNA双螺旋结构的一种形式,具有左旋型态的双股螺旋(与常见的B-DNA相反),并呈现锯齿形状。Z-DNA为三种具生物活性的DNA双螺旋结构之一,另两种为A-
22、DNA与B-DNA。Z-DNA为首先于1979年被解出晶体结构的DNA型态,研究者为麻省理工大学的Alexander Rich等人。B型及Z型相互结合时的结晶则解于2005年,使科学家了解Z-DNA在细胞中的潜在角色,当一段Z-DNA形成时,其两端必为B-Z相互结合型态,形成与B-DNA的接口。 结构Z-DNA的双股螺旋为左旋型态,与B-DNA的右旋型态明显有所差别。其结构每两个碱基对重复出现一次。大小螺旋凹槽之间的差别较A型及B型小,只在宽度上有些微差异。这种型态并不常见,但某些特定情况可增加其存在的可能,如嘌呤-嘧啶交替序列、DNA超螺旋,或盐份与某些阳离子浓度高时。Z-DNA能够与B-D
23、NA构成相互结合型态,这种结构会使一对碱基突出于双螺旋之外B-DNA:Watson和Crick提出的DNA双螺旋结构属于B型双螺旋,它是以在生理盐溶液中抽出的DNA纤维在92%相对湿度下进行X射线衍射图谱为依据进行推测的,这是DNA分子在水性环境和生理条件下最稳定的结构。A-DAN:在以钾或绝作反离子,相对湿度为75%时,DNA分子的X射线衍射图给出的是A构象,ADNA每螺旋含11个碱基对,而且变成ADNA后,大沟变窄、变深,小沟变宽、变浅。ZDNA:它是左手双螺旋,与右手螺旋的不同是螺距延长(4.5nm左右),直径变窄(1.8nm),每个螺旋含12个碱基对,分子长链中磷原子不是平滑延伸而是锯
24、齿形排列,有如“之”字形一样,因此叫它Z构象,这一构象中的重复单位是二核苷酸而不是单核苷酸;而且ZDNA只有一个螺旋沟,它相当于B构象中的小沟,它狭而深,大沟则不复存在 9、增变基因(mutator gene)能够增加自发突变率的基因,生物体在通常环境下变异称为“自发突变”,对“自发突变”的发生和抑制相关的一组基因,称为"增变基因”,在这类基因有缺陷时,“自发突变”的发生率即大幅度上升增变基因(mutator gene):该基因的突变会使整个基因组的突变频率增高,eg. A. DNA多聚酶基因,突变后使多聚酶的3' 5'校正功能降低或丧失,使基因组突变频率增高; 10
25、、操纵子(operon)是由一个或多个相关基因以及调控他们转录的操纵因子启动子序列组成的基因表达单位。11、同功tRNA(isoaccepter)一种tRNA只能携带一种氨基酸,但一种氨基酸可被不止一种tRNA携带。同一生物中,携带同一种氨基酸的不同tRNA称作“同功受体tRNA”。运载同一种氨基酸的一组不同tRNA称为同功tRNA。一组同功tRNA由同一种氨酰基tRNA合成酶催化。12、冈崎片段(Okazaki fragment) 冈崎片段:相对比较短的DNA链(大约1000核苷酸残基),是在DNA的滞后链的不连续合成期间生成的片段,这是Reiji Okazaki在DNA合成实验中添加放射性
26、的脱氧核苷酸前体观察到的。DNA复制过程中,2条新生链都只能从5端向3端延伸,前导链连续合成,滞后链分段合成.这些分段合成的新生DNA片段称冈崎片段.细菌冈崎片段长度1000-2000核苷酸,真核生物冈崎片段长度100-200核苷酸.在连续合成的前导链中,U-糖苷酶和AP内切酶也会在错配碱基U处切断前导链.13、移码突变(frameshift mutation)是由于基因中增加或减少碱基(改变的碱基数不得是3或3的倍数)所致在基因DNA中插入或缺失非3的倍数的少数几个碱基,因而在该基因DNA作为蛋白质的氨基酸顺序的信息解读时,读码的框架会发生移动,这样的突变称为移码突变。14、基因簇(gene
27、 cluster)功能相同或相关的许多基因聚集成簇,就形成一个基因簇。某一祖先基因由于重复和变异产生的一系列基因称为一个基因家族(Gene family)。家族成员可以成簇存在,或者分散在不同的染色体中(或两者都有)。尽管一个结构基因家族的成员可以在不同时期或不同类型的细胞中表达,但是它们经常是相互关联或甚至具有相同的功能。基因家族:是真核生物基因组中来源相同,结构相似,功能相关的一组基因超基因家族(gene superfamily),其各基因序列间没有同源性,但其表达产物的功能却相似。在多基因家族中,某些成员并不产生有功能的基因产物,这些基因称为假基因(pseudo gene)15、琥珀突变
28、(amber mutation)由于碱基对的改变而使决定某一氨基酸的密码子变成一个终止密码子的基因突变叫无义突变。其中密码子改变为UAG的无义突变又叫琥珀突变,密码子改变成UAA的无义突变又叫赭石突变。 16、核小体(nucleosme)由DNA和组蛋白(histone)构成,是染色质(染色体)的基本结构单位。由4种组蛋白H2A、H2B、H3和H4, 每一种组蛋白各二个分子,形成一个组蛋白八聚体,约200 bp的DNA分子盘绕在组蛋白八聚体构成的核心结构外面,形成了一个核小体。17、拓扑异构酶(topoisomerase):DNA拓扑异构酶可以分两类:一类叫拓扑异构酶I,一类叫拓扑异构酶II。
29、拓扑异构酶I催化DNA链的断裂和重新连接,每次只作用于一条链,即催化瞬时的单链的断裂和连接,它们不需要能量辅因子如ATP或NAD。拓扑异构酶II能同时断裂并连接双股DNA链它们通常需要能量辅因子ATP。 为催化DNA拓扑学异构体相互转变的酶之总称。DNA拓扑异构酶是存在于细胞核内的一类酶,他们能够催化DNA链的断裂和结合,从而控制DNA的拓扑状态。DNA拓扑异构酶可以分两类:一类叫拓扑异构酶I,一类叫拓扑异构酶II。拓扑异构酶I催化DNA链的断裂和重新连接,每次只作用于一条链,即催化瞬时的单链的断裂和连接,它们不需要能量辅因子如ATP或NAD。E.coli DNA拓扑异构酶I又称蛋白,大白鼠肝
30、DNA拓扑异构酶I又称切刻-封闭酶(nicking-closing enzyme )。拓扑异构酶II能同时断裂并连接双股DNA链它们通常需要能量辅因子ATP。在拓扑异构酶II中又可以分为两个亚类:一个亚类是DNA旋转酶(DNA gyrase ),其主要功能为引入负超螺旋,在DNA复制中起十分重要的作用。迄今为止,只有在原核生物中才发现DNA旋转酶另一个亚类是转变超螺旋DNA(包括正超螺旋和负超螺旋)成为没有超螺旋的松弛形式(relaxed form )。这一反应虽然是热力学上有利的方向,但不知道为什么它们仍然像DNA旋转酶一样需要ATP,这可能与恢复酶的构象有关。这一类酶在原核生物和真核生物中
31、都有发现。18、引发体(primosome)是蛋白复合体, 主要成份是引物酶和DNA解旋酶,是在合成用于DNA复制的RNA引物时装配的。引发体与DNA结合后随即由引物酶合成RNA引物。引发体(primosome)是由多种蛋白质及酶组成,是DNA复制开始所必需的。引发体中的某些蛋白质如DnaA能结合至DNA复制起始部位,DnaB具有解链酶的作用,DnaC辅助DnaB结合到复制起始点,使起始部位的双链解开。而引发体中的引物酶(primase)在已解开起始部位的DNA单链按碱基互补配对催化NTP聚合,合成一小片段的RNA,作为DNA合成的引物,即沿此引物RNA的3-OH进行延伸引发体(primoso
32、me)和RNA引物(primer):引发体由引发前体与引物酶(primase)组装而成。引发前体是由若干蛋白因子聚合而成的复合体;引物酶本质上是一种依赖DNA的RNA聚合酶(DDRP)。 19、卫星DNA(satellite DNA)卫星DNA(satellite DNA)是一类高度重复序列 DNA在介质氯化铯中作密度梯度离心,离心速度可以高达每分钟几万转;此时DNA分子将按其大小分布在离心管内不同密度的氯化铯介质中,小的分子处于上层,大的分子处于下层;从离心管外看,不同层面的DNA形成了不同的条带。根据荧光强度的分析,可以看到在一条主带以外还有一个或多个小的卫星带。这些在卫星带中的DNA即被
33、称为卫星DNA,这种DNA的GC含量一般少于主带中的DNA,浮力密度也低。卫星DNA按其浮力密度的大小可以分成I、四类,其浮力密度分别是1687,1693,1697和1700 gcm3。各类卫星DNA都是由各种不同的重复序列家族所组成。卫星DNA通常是串联重复序列。卫星DNA按其重复单元的核苷酸的多少,可以分为两类。一类是小卫星DNA(minisatellite DNA),由几百个核苷酸对的单元重复组成。另一类是微卫星DNA(microsatellite DNA),由2个到20个左右的核苷酸对的单元重复成百上千次所组成。卫星DNAI家族由42bp的单元组成,其中17bp(ACATAAAATAT
34、 AAAGT)为可变区,25 bp(ACCCAAAAAGT TATTATATACTGT)为重复单元。卫星DNA家族是保守性差的ATTCC重复。卫星DNA是较保守的ATTCC重复,且与10bp的序列(A TCGGGTTG)相间分布。卫星DNA还有另一些分类的名称,如卫星DNA是灵长类特有的单元为171 bp的高度重复序列,最初是在非洲青猴基因组中发现,现在已确定分布在人染色体的着丝粒区。卫星DNA家族是单元为68bp的串联重复序列,富含GC。卫星DNA是220 bp的串联重复。第类卫星DNA称为隐藏的卫星DNA(cryptil satellite)。这是包含了多种串联重复序列的DNA分子,离心时
35、并不像卫星DNA那样也分开,但它的属性却类似卫星DNA。20、SD序列(SD sequence) SD序列(Shine-Dalgarno sequence):mRNA中用于结合原核生物核糖体的序列。SD序列:在细菌mRNA 起始密码子AUG上游10个碱基左右处,有一段富含嘌呤的碱基序列,能与细菌16SrRNA3端识别,帮助从起始AUG处开始翻译。在原核生物中, 核糖体中与mRNA结合位点位于16S rRNA 的3端,mRNA中与核糖体16S rRNA结合的序列称为SD序列(SD sequence),它是1974年由J.Shine 和 L.Dalgarno发现的,故此而命名。SD序列是mRNA中
36、5端富含嘌呤的短核苷酸序列,一般位于mRNA的起始密码AUG的上游3至11个核苷酸处,并且同16S rRNA 3端的序列互补。所谓RBS,是指起始密码子AUG上游的一段非翻译区.在RBS中有SD(Shine-Dalg-arno)序列,长度一般为5个核苷酸,富含 G,A,该序列与核糖体16SrRNA的3'端互补配对,促使核糖体结合到mRNA上,有利于翻译的起始. RBS的结合强度取决于SD序列的结构及其与起始密码AUG之间的距离.SD与AUG之间相距一般以4-10个核苷酸为佳,9个核苷酸最佳。仅是指原核生物。真核起始不需要SD,需要帽子,因为真核是单顺反子。21颠换 (transvers
37、ion):异型碱基的置换,即一个嘌呤被另一个嘧啶替换;一个嘧啶被另一个嘌呤置换 。22、弱化子(attenuator)衰减子:attenuator23、基因家族(gene family) 是真核生物基因组中来源相同,结构相似,功能相关的一组基因24、CAT框(CAT box)真核生物结构基因上游的顺式作用元件: 真核生物结构基因上游的顺式作用要素。其共有序列为CCAAT。在真核生物中,在转录起始位点上游70-80bp处有。25、无义突变(琥珀突变)是编码某一氨基酸的三联体密码经碱基替换后,变成不编码任何氨基酸的终止密码UAA、UAG或UGA。虽然无义突变并不引起氨基酸编码的错误,但
38、由于终止密码出现在一条的中间部位,就使翻译时多肽链的终止就此终止,形成一条不完整的多肽链。26、TATA框:启动子启动子主要包括以下两个序列:在5端转录起始点上游约2030个核苷酸的地方,有TATA框(TATA box)。TATA框是一个短的核苷酸序列,其碱基顺序为TATAATAAT。TATA框是启动子中的一个顺序,它是RNA聚合酶的重要的接触点,它能够使酶准确地识别转录的起始点并开始转录。当TATA框中的碱基顺序有所改变时,mRNA的转录就会从不正常的位置开始。在5端转录起始点上游约7080个核苷酸的地方,有CAAT框(CAAT box)。CAAT框是启动子中另一个短的核苷酸序列,其碱基顺序
39、为GGCTCAATCT。CAAT框是RNA聚合酶的另一个结合点,它的作用还不很肯定,但一般认为它控制着转录的起始频率,而不影响转录的起始点。当这段顺序被改变后,mRNA的形成量会明显减少。Hogness等在真核基因中又发现了类似Pribnow框的共同序列,即位于2530 bp处的TATAAAAG,也称TATA框(TATAbox)。 RNA聚合酶同启动子结合的区域称为启动子区。将各种原核基因同RNA聚合酶全酶结合后,用DNase I水解DNA,最后得到与RAN聚合酶结合而未被水解的DNA片段,这些片段有一个由5个核苷酸(TATAA)组成的共同序列,以其发现者的名字命名为Pribnow框(Prib
40、nowbox),这个框的中央位于起点上游10bp处,所以又称10序列(10 sequence),后来在35 bp处又找到另一个共同序列(TTGACA)。Hogness等在真核基因中又发现了类似Pribnow框的共同序列,即位于2530 bp处的TATAAAAG,也称TATA框(TATAbox)。TATA框上游的保守序列称为上游启动子元件(upstream promoter element,UPE)或上游激活序列(uptreamactivatingsequence,UAS)。另外在7078 bp处还有一段共同序列CCAAT,称为CAAT框(CAAT box) 27、反式作用:反式作用因子(tra
41、ns-acting factor)是指能直接或间接地识别或结合在各类顺式作用元件核心序列上参与调控靶基因转录效率的蛋白质。大多数真核转录调节因子由某一基因表达后,可通过另一基因的特异的顺式作用元件相互作用,从而激活另一基因的转录。这种调节蛋白称反式作用因子。参与基因表达调控的因子, 它们与特异的靶基因的顺式元件结合起作用。编码反式作用因子的基因与被反式作用因子调控的靶序列(基因)不在同一染色体上。反式作用因子有两个重要的功能结构域:DNA结合结构域和转录活化结构域,它们是其发挥转录调控功能的必需结构。反式作用因子可被诱导合成, 其活性也受多种因素的调节。同一类序列特异性的反式作用因子由多基因家
42、族所编码, 它们具有特定的蛋白质结构(如上述的锌指结构、碱性亮氨酸拉链、螺旋-环-螺旋基元等)和蛋白质结构上的同源性, 因而构成反式作用因子家族, 如类固醇激素受体家族、AP1家族等。 主要包括:1.DNA结合域:a.螺旋-转角-螺旋b.锌指结构c.亮氨酸拉链d.螺旋-突环-螺旋2.转录激活域:与其他转录因子相互作用的结构成分。31、复合转座子:两个插入序列包围着一段中央区域,这两个序列中的一个或者两个可能使整个元件转座。36、有义链 : DNA双链在转录过程中于转录形成的RNA序列相同(T对应U)的那条链叫做有义链。37、内含子(intron)内含子是基因内的间隔序列,不出现在成熟的RNA分
43、子中,在转录后通过加工被切除。大多数真核生物的基因都有内含子。需注意的是,在古细菌中也有内含子。大多数真核结构基因中的间插序列(intervening sequence)或不编码序列。它们可以转录,但在基因转录后,由这些间插序列转录的部分(也可用内含子这个术语表示)经加工被从初级转录本中准确除去,才产生有功能的RNA41、异源双链体(heteroduplex) Heteroduplex (hybrid) DNA:由不同亲本双链分子中的互补单链产生碱基配对的双链DNA,在遗传重组中产生。分子杂交(简称杂交,hybridization)是核酸研究中一项最基本的实验技术。其基本原理就是应用核酸分子的
44、变性和复性的性质,使来源不同的DNA(或RNA)片段,按碱基互补关系形成杂交双链分子(heteroduplex)。杂交双链可以在DNA与DNA链之间,也可在RNA与DNA链之间形成。42、转座子(transposon)转座(因)子是基因组中一段可移动的DNA序列,可以通过切割、重新整合等一系列过程从基因组的一个位置“跳跃”到另一个位置。 复合型的转座因子称为转座子(transposon,Tn)。这种转座因子带有同转座无关的一些基因,它的两端就是IS,构成了“左臂”和“右臂”。两个“臂”可以是正向重复,也可以是反向重复。这些两端的重复序列可以作为Tn的一部分随同Tn转座,也可以单独作为IS而转座
45、。转座子是细菌细胞里发现的一种复合型转座因子,这种转座因子带有同转座无关的一些基因,如抗药性基因;它的两端就是IS,构成了“左臂”和“右臂”。两个“臂”可以是正向重复,也可以是反向重复。这种复合型的转座因子称为转座子(transposon,Tn)。这些两端的重复序列可以作为Tn的一部分随同Tn转座,也可以单独作为IS而转座。Tn两端的IS有的是完全相同的,有的则有差别。当两端的IS完全相同时,每一个IS都可使转座子转座;当两端是不同的IS时,则转座子的转座取决于其中的一个IS。Tn有抗生素的抗性基因,Tn很容易从细菌染色体转座到噬菌体基因组或是接合型的质粒。因此,Tn可以很快地传播到其他细菌细
46、胞,这是自然界中细菌产生抗药性的重要来源。 两个相邻的IS可以使处于它们中间的DNA移动,同时也可制造出新的转座子。Tn10的两端是两个取向相反的IS1O,中间有抗四环素的抗性基因(TetR),当TnlO整合在一个环状DNA分子中间时,就可以产生新的转座子。当转座子转座插人宿主DNA时,在插入处产生正向重复序列,其过程是这样的:先是在靶DNA插入处产生交错的切口,使靶DNA产生两个突出的单链末端,然后转座子同单链连接,留下的缺口补平,最后就在转座子插入处生成了宿主DNA的正向重复。已知的转座因子的转座途径有两种:复制转座和非复制转座。
47、 1复制转座(replicative transposition) 转座因子在转座期间先复制一份拷贝,而后拷贝转座到新的位置,在原先的位置上仍然保留原来的转座因子。复制转座有转座酶(transposase)和解离酶(resolvase)的参与。转座酶作用于原来的转座因子的末端,解离酶则作用于复制的拷贝。TnA是复制转座的例子。 2非复制转座(non-replicative transposition) 转座因子直接从原来位置上转座插入新的位置,并留在插入位置上,这种转座只需转座酶的作用。
48、非复制转座的结果是在原来的位置上丢失了转座因子,而在插入位置上增加了转座因子。这可造成表型的变化。 保留转座(conservative transposition)也是非复制转座的一种类型。其特点是转座因子的切离和插人类似于入噬菌体的整合作用,所用的转座酶也是属于入整合酶(integrase)家族。出现这种转座的转座因子都比较大,而且转座的往往不只是转座因子自身,而是连同宿主的一部分DNA一起转座。 非复制转座可以是直接从供体分子的转座子两端产生双链断裂,使整个转座子释放出来,然后在受体分子上产生的交错接口处插入,这是“切割与黏接”(“cut and pas
49、te")的方式。另一种方式是在转座子分子同受体分子之间形成一种交换结构(crossover structure),受体分子上产生交错的单链缺口,与酶切后产生的转座子单链游离末端连接,并在插入位点上产生正向重复序列;最 后,由此生成的交换结构经产生缺口(nick)而使转座子转座在受体分子。供体DNA分子上留下双链断裂,结果 或是供体分子被降解,或是被DNA修复系统识别而得到修复。 在复制转座过程中,转座和切离是两个独立事件。先是由转座酶分别切割转座子的供体和受体DNA分子。转座子的末端与受体DNA分子连接,并将转座子复制一份拷贝,由此生成的中间体即共
50、整合体(cointegrat,)有转座子的两份拷贝。然后在转座子的两份拷贝间发生类似同源重组的反应,在解离酶的作用下,供体分子同受体分子分开,并且各带一份转座子拷贝。同时受体分子的靶位点序列也重复了一份拷贝。 酵母接合型的相互转换也是复制转座所产生。酿酒酵母(Saccharomvcescerfvisiae)的生命周期中有双倍体细胞和单倍体细胞两种类型。单倍体细胞则有a型和型两种接合型(mating type)。单倍体酵母是a型还是型,由单个基因座MAT所决定。MAT有一对等位基因MAT。和MAT,在同宗接合(homothallic)的酵母菌株中,酵母菌十分频
51、繁地转换其接合型,即从a转换成,然后在下一代又转换为a。这种转换和回复的频率已远远高于通常的自发突变,表明这不是通常的突变机制。现在已经知道,在MAT基因座两侧有两个基因带有MAT和AT的拷贝,这就是HML和HMR基因。这两个基因贮存了两种接合型等位基因,当转座给MAT基因座时就发生了接合型的转换。因此,MAT基因座是通过转座而转换其接合型的。MAT基因座的序列转换成另一个基因的序列,这种机制称为基因转换(gene convertion)。43、无效突变(null mutation)由于大片段插入、缺失或重排而导致基因产物完全无效。 44、溶源现象(lysogenesis)溶源性细菌细胞中含有
52、以原噬菌体状态存在的温和噬菌体基因组的细菌。在染色体上整合了温和噬菌体的核酸(即原噬菌体),但又检查不出噬菌体的存在,这样的细菌称为溶源性细菌。原噬菌体可稳定遗传,随细胞分裂而传给子代。在传代过程中可能发生原噬菌体的丢失,从而失去溶源性。只有极少数细菌个体发生自发裂解;外界因素如紫外线,X射线等可诱导原噬菌体活化,使细菌裂解数目大增,实际应用上可用此法获得大量游离噬菌体。溶源性细菌对其同源噬菌体具有“免疫性”,即噬菌体可进入细胞,但不能增殖,亦不能导致细菌裂解。溶源性广泛存在于各种细菌中,如大肠杆菌,沙门氏菌属,芽孢杆菌属,棒杆菌属等的某些种类均有溶源现象。有些原噬菌体还能使溶源性细菌获得某种
53、新的特性,例如白喉棒杆菌,只有被噬菌体溶源化后才具有产生外毒素的致病能力。溶原现象大多数烈性噬菌体(virulent phage)在感染敏感细菌细胞后,经过一个潜伏期(eclipse period),即细胞内营养生长和繁殖循环后,便可引起宿主细胞裂解,并释放出成百上千的噬菌体粒子,这就是所谓的噬菌体裂解反应(lytic response)然而有一些温和噬菌体除了能产生裂解繁殖外,它的基因组还可以被整合到宿主染色体DNA上,并且长期存在于宿主细胞中。整合后的噬菌体基因组能随宿主DNA一起复制,当细菌分裂产生子代细胞时,其子代染色体DNA中都带有整合的噬菌体基因组,这种噬菌体基因组的整合作用就称为
54、噬菌体的溶原化(lysogenization)。染色体 DNA上整合有噬菌体基因组的宿主细胞,不会因为噬菌体感染而发生裂解的这种现象称为溶原现象(lysogenesis),整合有噬菌体基因组的宿主细胞叫做溶原菌(lysogen),而被整合的噬菌体基因组叫做原噬菌体(prophage)。 45、密码兼并(code degeneracy)一种氨基酸可以由几种不同的密码子决定,这种情况叫做密码子的兼并性。 如苏氨酸有4个密码子,即ACU、ACC、ACA、ACG。 46、光复合修复(photoreaction repair)光复活修复(Photoreactivation Repair)作用是一种高度专
55、一的DNA直接修复(Direct Repair)过程,它只作用于紫外线引起的DNA嘧啶二聚体(主要是TT,也有少量CT和CC)。它的机制是可见光(有效波长为400nm左右)激活了光复活酶(Photoreactivating Enzyme),它能分解紫外线照射而形成的嘧啶二聚体。光复活酶在生物界分布很广,从低等单细胞生物一直到鸟类都有,而高等的哺乳类却没有。47、断裂基因(split gene)一个基因,往往由几个互不相邻的段落(外显子)组成,它们被长达数百个甚至数千个碱基对的插入序列(内含子)所间隔,这样的基因称为断裂基因(splicing gene)。在真核细胞中断裂基因具有普遍性,断裂基因
56、在原核细胞中也有发现。 断裂基因在进化中可能有以下意义。(1)有利于贮存较多的信息,增加信息量。一般地说,一个基因只转录出一种mRNA,但是一些断裂基因以不同的剪接方式可以产生两种以至多种mRNA,编码不同功能的多肽。(2)有利于变异和进化。虽然单个碱基的改变有时可以引起氨基酸的变更而造成蛋白质的变化,但是很难产生重大改变而形成新的蛋白质。更何况如果单个碱基的突变发生在密码子第三位上往往是沉默的,于是大大地降低了突变的效应。而在断裂基因中,如果突变发生在内含子与外显子结合的部位,那么就会造成剪接方式的改变,结果使蛋白质结构发生大幅度的变化,从而加速进化。(3)增加重组几率。内含子有可
57、能不断地增减造成新的剪接方式,一方面形成新的基因,另一方面在剪接过程中无疑会增加重组频率;同时,在断裂基因中,由于内含子的存在,基因长度增加,于是也增加了重组频率。(4)可能是基因调控装置。内含子可能在基因表达中有一定的调控作用,在基因转录水平上以及在合成了mRNA以后的加工过程中起着调控基因表达的作用。总之,断裂基因是具有十分重要的生物学意义的,但是对它的功能还不是完全了解,还有待于进一步研究。在本世纪70年代以前,人们一直认为遗传物质是双链DNA,在上面排列的基因是连续的。Robert and Sharp彻底改变了这一观念。他们以腺病毒作为实验对象,因为它的排列序列同其他高等动物很接近,包
58、括人。结果发现它们的基因在DNA上的排列由一些不相关的片段隔开,是不连续的。他们的发现改变了科学家以往对进化的认识,对于现代生物学的基础研究以及生物进化论具有重要的奠基作用,对于肿瘤以及其他遗传性疾病的医学导向研究,亦具有特别重要的意义。真核生物的基因组十分复杂,DNA的含量也比原核生物的大得多。噬菌体由于基因组很小,但又要编码一些必不可少的蛋白,碱基显然不够用,这样不仅几乎所有的碱基都参加编码,而且在进化中还出现了“重叠基因”,以有限的基因编码更多的遗传信息。真核基因组正好相反,DNA十分富余,这样不仅无需“重叠基因”,而且很多序列不编码,如重复序列、间隔序列 (spacer) 和间插序列(
59、intervening sequence) 即内含子(intron)等。但不编码并不等于没有功能。有的我们可能还不了解,如重复序列。间隔区和间插序列这两个概念是不同的,间隔区是指基因间不编码的部分,有的转录称转录间隔区(TS),有的不转录称为非转录间隔区(NTS)。间插序列是指基因内部不编码的区域,也称内含子,在初始转录本中存在此序列,但在加工后将被切除掉,所以常不作为翻译的信息。间隔区常常含有转录的启动子和其它上游调节序列。有的内含子也可以编码,如成熟酶和内切酶等。在遗传学上通常将能编码蛋白质的基因称为结构基因。真核生物的结构基因是断裂的基因。一个断裂基因能够含有若干段编码序列,这些可以编码的序列称为外显子。在两个外显子之间被一段不编码的间隔序列隔开,这些间隔序列称为内含子。每个断裂基因在第一个和最后一个外显子的外侧各有一段非编码区,有人称其为侧翼序列。在侧翼序列上有一系列调控序列(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电商平台中社交媒体的UGC内容营销
- 2025年度网络安全论坛会议服务合同标准范本
- 现代农业技术与办公自动化的融合
- 2025年度股票质押贷款额度管理合同样本
- 2025年度股权代持合同模板(股权融资)
- 2025年度装配式建筑部品部件钢筋采购合同协议书
- 2025年度绿色农产品批发合同(升级版)
- 2025年度智能空调销售与全面安装服务合同书
- 2025年度智慧城市建设合同与信息化基础设施共享协议
- 班会课与中职学生心理健康的紧密联系
- 2024年大宗贸易合作共赢协议书模板
- 初中数学教学经验分享
- 新闻记者证600道考试题-附标准答案
- 2024年公开招聘人员报名资格审查表
- TSG ZF001-2006《安全阀安全技术监察规程》
- 长螺旋钻孔压灌桩工程劳务清包合同(范本)
- 普惠金融政策与区域差异
- 中考语文二轮复习:记叙文阅读物象的作用(含练习题及答案)
- 老年外科患者围手术期营养支持中国专家共识(2024版)
- 子宫畸形的超声诊断
- 2024年1月高考适应性测试“九省联考”数学 试题(学生版+解析版)
评论
0/150
提交评论