版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、完全平方公式的几何背景专题训练试题精选一选择题(共6小题)1(2010丹东)图是一个边长为(m+n)的正方形,小颖将图中的阴影部分拼成图的形状,由图和图能验证的式子是()a(m+n)2(mn)2=4mnb(m+n)2(m2+n2)=2mnc(mn)2+2mn=m2+n2d(m+n)(mn)=m2n22利用图形中面积的等量关系可以得到某些数学公式例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2你根据图乙能得到的数学公式是()a(a+b)(ab)=a2b2b(ab)2=a22ab+b2ca(a+b)=a2+abda(ab)=a2ab3如图,你能根据面积关系得到的数学公
2、式是()aa2b2=(a+b)(ab)b(a+b)2=a2+2ab+b2c(ab)2=a22ab+b2da(a+b)=a2+ab4如图(1),是一个长为2a宽为2b(ab)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()aabb(a+b)2c(ab)2da2b25如图的图形面积由以下哪个公式表示()aa2b2=a(ab)+b(ab)b(ab)2=a22ab+b2c(a+b)2=a2+2ab+b2da2b2=(a+b)(ab)6如果关于x的二次三项式x2mx+16是一个完全平方式,那么m的值是()a8或8b8c8d无法确
3、定二填空题(共7小题)7(2014玄武区二模)如图,在一个矩形中,有两个面积分别为a2、b2(a0,b0)的正方形这个矩形的面积为_(用含a、b的代数式表示)8如图,边长为(m+2)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为2,则另一边长是_(用含m的代数式表示)9有两个正方形a,b,现将b放在a的内部得图甲,将a,b并列放置后构造新的正方形得图乙若图甲和图乙中阴影部分的面积分别为1和12,则正方形a,b的面积之和为_10如图1和图2,有多个长方形和正方形的卡片,图1是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同
4、表示可以用来验证等式a(a+b)=a2+ab成立根据图2,利用面积的不同表示方法,写出一个代数恒等式_11如图,正方形广场的边长为a米,中央有一个正方形的水池,水池四周有一条宽度为的环形小路,那么水池的面积用含a、b的代数式可表示为_平方米12如图,请写出三个代数式(a+b)2、(ab)2、ab之间的等量关系是_13如图,长为a,宽为b的四个小长方形拼成一个大正方形,且大正方形的面积为64,中间小正方形的面积为16,则a=_,b=_三解答题(共10小题)14阅读学习:数学中有很多等式可以用图形的面积来表示如图1,它表示(m+2n)(m+n)=m2+3mn+2n2,(1)观察图2,请你写出(a+
5、b)2,(ab)2,ab之间的关系_(2)小明用8个一样大的长方形,(长为a,宽为b),拼成了如图甲乙两种图案,图案甲是一个正方形,图案甲中间留下了一个边长为2的正方形;图形乙是一个长方形a24ab+4b2=_ ab=_15【学习回顾】我们已经知道,根据几何图形的面积关系可以说明完全平方公式,说明如下:如图1,正方形abcd的面积=正方形ebnh的面积+(长方形aehm的面积+长方形hncf的面积)+正方形mhfd的面积即:(a+b)2=a2+2ab+b2【思考问题】还有一些等式也可以用上述方式加以说明,请你尝试完成如图2,长方形abnm的面积=长方形ebcf的面积+长方形aefd的面积长方形
6、hncf的面积_的面积,即:(2ab)(a+b)=_【尝试实践】计算(2a+b)(a+b)=_仿照上述方法,画图并说明16阅读下列文字,我们知道对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2请解答下列问题:(1)写出图2中所表示的数学等式_;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片若干个长为a和宽为b的长方形纸片,利用所给的纸片拼出一个几何图形,使得计算它的面积能得到数学公式:2a
7、2+5ab+2b2=(2a+b)(a+2b)17如图1,将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形(1)图2的空白部分的边长是多少?(用含ab的式子表示)(2)若2a+b=7,且ab=3,求图2中的空白正方形的面积(3)观察图2,用等式表示出(2ab)2,ab和(2a+b)2的数量关系18动手操作:如图是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图所示拼成一个正方形提出问题:(1)观察图,请用两种不同的方法表示阴影部分的面积;(2)请写出三个代数式(a+b)2,(ab)2,ab之间的一个等量关系问题解决
8、:根据上述(2)中得到的等量关系,解决下列问题:已知:x+y=6,xy=3求:(xy)2的值19图是一个长为2a,宽为2b的长方形,沿图中虚线剪开,可分成四块小长方形(1)将图中所得的四块长为a,宽为b的小长方形拼成一个正方形(如图)请利用图中阴影部分面积的不同表示方法,直接写出代数式(a+b)2、(ab)2、ab之间的等量关系是_;(2)根据(2)题中的等量关系,解决如下问题:已知m+n=8,mn=7,则mn=_;(3)将如图所得的四块长为a,宽为b的小长方形不重叠地放在长方形abcd的内部(如图),未被覆盖的部分(两个长方形)用阴影表示若左下角与右上角的阴影部分的周长之差为4,且小长方形的
9、周长为8,则每一个小长方形的面积为_20把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积(1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的方法计算这个图形的面积,你能发现什么结论,请写出来(2)如图2,是将两个边长分别为a和b的正方形拼在一起,b、c、g三点在同一直线上,连接bd和bf,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?21阅读材料并填空:我们知道,完全平方式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式样也可以用这种形式表示,如:(2a+b)
10、(a+b)=2a2+3ab+b2,就可以用图(1),或图(2)等图形的面积表示请你写出图(3)所表示的代数恒等式_请你写出图(4)所表示的代数恒等式_22图1是一个长为2x、宽为2y的长方形,沿图中虚线用剪刀剪成四个完全相同的小长方形,然后按图2所示拼成一个正方形(1)你认为图2中的阴影部分的正方形的边长等于_ (2)试用两种不同的方法求图2中阴影部分的面积方法1:_;方法2:_(3)根据图2你能写出下列三个代数式之间的等量关系吗?代数式:(x+y)2,(xy)2,4xy_(4)根据(3)题中的等量关系,解决如下问题:若x+y=4,xy=3,则(xy)2=_23已知图甲是一个长为2m,宽为2n
11、的长方形,沿图中虚线用剪刀均匀分成四小块长方形,然后按图乙的形状拼成一个正方形(1)你认为图乙中阴影部分的正方形的边长等于多少?_(2)请用两种不同的方法求图乙中阴影部分的面积方法一:_;方法二:_(3)观察图乙,你能写出下列三个代数式之间的等量关系吗?(m+n)2;(mn)2; mm(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=5,求(ab)2的值完全平方公式的几何背景专题训练试题精选参考答案与试题解析一选择题(共6小题)1(2010丹东)图是一个边长为(m+n)的正方形,小颖将图中的阴影部分拼成图的形状,由图和图能验证的式子是()a(m+n)2(mn)2=4mnb(m+
12、n)2(m2+n2)=2mnc(mn)2+2mn=m2+n2d(m+n)(mn)=m2n2考点:完全平方公式的几何背景菁优网版权所有专题:计算题;压轴题分析:根据图示可知,阴影部分的面积是边长为m+n的正方形减去中间白色的正方形的面积m2+n2,即为对角线分别是2m,2n的菱形的面积据此即可解答解答:解:(m+n)2(m2+n2)=2mn故选b点评:本题是利用几何图形的面积来验证(m+n)2(m2+n2)=2mn,解题关键是利用图形的面积之间的相等关系列等式2利用图形中面积的等量关系可以得到某些数学公式例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2你根据图乙能得
13、到的数学公式是()a(a+b)(ab)=a2b2b(ab)2=a22ab+b2ca(a+b)=a2+abda(ab)=a2ab考点:完全平方公式的几何背景菁优网版权所有分析:根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积解答:解:大正方形的面积=(ab)2,还可以表示为a22ab+b2,(ab)2=a22ab+b2故选b点评:正确列出正方形面积的两种表示是得出公式的关键,也考查了对完全平方公式的理解能力3如图,你能根据面积关系得到的数学公式是()aa2b2=(a+b)(ab)b(a+b)2=a2+2ab+b2c(ab)2=a22ab+b
14、2da(a+b)=a2+ab考点:完全平方公式的几何背景菁优网版权所有分析:根据图形得出阴影部分的面积是(ab)2和b2,剩余的矩形面积是(ab)b和(ab)b,即大阴影部分的面积是(ab)2,即可得出选项解答:解:从图中可知:阴影部分的面积是(ab)2和b2,剩余的矩形面积是(ab)b和(ab)b,即大阴影部分的面积是(ab)2,(ab)2=a22ab+b2,故选c点评:本题考查了完全平方公式的应用,主要考查学生的阅读能力和转化能力,题目比较好,有一定的难度4如图(1),是一个长为2a宽为2b(ab)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正
15、方形,则中间空白部分的面积是()aabb(a+b)2c(ab)2da2b2考点:完全平方公式的几何背景菁优网版权所有分析:先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积矩形的面积即可得出答案解答:解:由题意可得,正方形的边长为(a+b),故正方形的面积为(a+b)2,又原矩形的面积为4ab,中间空的部分的面积=(a+b)24ab=(ab)2故选c点评:此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键,难度一般5如图的图形面积由以下哪个公式表示()aa2b2=a(ab)+b(ab)b(ab)2=a22ab+b2c(a+b)2=a2+2ab+b2da2b2
16、=(a+b)(ab)考点:完全平方公式的几何背景菁优网版权所有分析:通过图中几个图形的面积的关系来进行推导解答:解:根据图形可得出:大正方形面积为:(a+b)2,大正方形面积=4个小图形的面积和=a2+b2+ab+ab,可以得到公式:(a+b)2=a2+2ab+b2故选:c点评:本题考查了完全平方公式的推导过程,运用图形的面积表示是解题的关键6如果关于x的二次三项式x2mx+16是一个完全平方式,那么m的值是()a8或8b8c8d无法确定考点:完全平方公式的几何背景菁优网版权所有分析:根据两平方项确定出这两个数,再根据乘积二倍项列式求解即可解答:解:x2mx+16是一个完全平方式,mx=
17、77;2×4x,解得m=±8故选a点评:本题是完全平方公式的考查,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式注意积的2倍的符号,避免漏解二填空题(共7小题)7(2014玄武区二模)如图,在一个矩形中,有两个面积分别为a2、b2(a0,b0)的正方形这个矩形的面积为(a+b)2(用含a、b的代数式表示)考点:完全平方公式的几何背景菁优网版权所有分析:求出大正方形的边长为a+b,再利用正方形的面积公式求解解答:解;两个小矩形的长为a,宽为b,正方形的边长为:a+b它的面积为:(a+b)2故答案为:(a+b)2点评:本题主要考查完全平方公式的几何表示,运用不同
18、方法表示阴影部分面积是解题的关键8如图,边长为(m+2)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为2,则另一边长是2m+2(用含m的代数式表示)考点:完全平方公式的几何背景菁优网版权所有专题:几何图形问题分析:由于边长为(m+2)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为2,利用矩形的面积公式即可求出另一边长解答:解:依题意得剩余部分为(m+2)2m2=m2+4m+4m2=4m+4,而拼成的矩形一边长为2,另一边长是(4m+4)
19、÷2=2m+2故答案为:2m+2点评:本题主要考查了多项式除以单项式,解题关键是熟悉除法法则9有两个正方形a,b,现将b放在a的内部得图甲,将a,b并列放置后构造新的正方形得图乙若图甲和图乙中阴影部分的面积分别为1和12,则正方形a,b的面积之和为13考点:完全平方公式的几何背景菁优网版权所有分析:设正方形a的边长为a,正方形b的边长为b,由图形得出关系式求解即可解答:解:设正方形a的边长为a,正方形b的边长为b,由图甲得a2b22(ab)=1即a2+b22ab=1,由图乙得(a+b)2a2b2=12,2ab=12,所以a2+b2=13,故答案为:13点评:本题主要考查了完全平方公式
20、的几何背景,解题的关键是根据图形得出数量关系10如图1和图2,有多个长方形和正方形的卡片,图1是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立根据图2,利用面积的不同表示方法,写出一个代数恒等式(a+b)(a+2b)=a2+2b2+3ab考点:完全平方公式的几何背景菁优网版权所有专题:计算题分析:表示阴影部分的面积有两种方法:大长方形的面积=(a+b)(a+2b),3个正方形的面积加上3个矩形的面积a2+ab+ab+ab+b2+b2,推出即可解答:解:由图2可知:阴影部分的面积是:(a+b)(a+2b),a2+ab+ab+ab+
21、b2+b2=a2+2b2+3ab,(a+b)(a+2b)=a2+2b2+3ab,故答案为:(a+b)(a+2b)=a2+2b2+3ab点评:本题考查了完全平方公式的几何背景的应用,关键是检查学生能否正确表示图形中阴影部分的面积,题目具有一定的代表性,考查了学生的理解能力、观察图形的能力等11如图,正方形广场的边长为a米,中央有一个正方形的水池,水池四周有一条宽度为的环形小路,那么水池的面积用含a、b的代数式可表示为a24ab+4b2或(a2b)2平方米考点:完全平方公式的几何背景菁优网版权所有专题:几何图形问题分析:根据图示计算出中央正方形的水池的边长,然后根据正方形的面积公式来计算水池的面积
22、解答:解:水池的边长是:a2b,所以,正方形水池的面积是(a2b)(a2b)=a24ab+4b2或(a2b)(a2b)=(a2b)2故答案是:a24ab+4b2或(a2b)2点评:本题考查对完全平方公式几何意义的理解解题时,主要围绕图形面积展开分析12如图,请写出三个代数式(a+b)2、(ab)2、ab之间的等量关系是a+b)2=(ab)2+4ab考点:完全平方公式的几何背景菁优网版权所有分析:通过观察图形知:(a+b)2,(ab)2,ab分别表示的是大正方形、空白部分的正方形及小长方形的面积解答:解:由图可以看出,大正方形面积=阴影部分的正方形的面积+四个小长方形的面积,即:(a+b)2=(
23、ab)2+4ab,故答案为:(a+b)2=(ab)2+4ab点评:此题考查了学生观察、分析图形解答问题的综合能力,关键是通过观察图形找出各图形之间的关系13如图,长为a,宽为b的四个小长方形拼成一个大正方形,且大正方形的面积为64,中间小正方形的面积为16,则a=6,b=2考点:完全平方公式的几何背景菁优网版权所有分析:先求出大正方形的边长为:a+b,小正方形的边长为:ab,再列出方程组求解解答:解:大正方形的边长为:a+b,小正方形的边长为:ab即:解得故答案为:6,2点评:本题的关键是求出大正方形的边长和小正方形的边长列出方程组三解答题(共10小题)14阅读学习:数学中有很多等式可以用图形
24、的面积来表示如图1,它表示(m+2n)(m+n)=m2+3mn+2n2,(1)观察图2,请你写出(a+b)2,(ab)2,ab之间的关系(a+b)2(ab)2=4ab(2)小明用8个一样大的长方形,(长为a,宽为b),拼成了如图甲乙两种图案,图案甲是一个正方形,图案甲中间留下了一个边长为2的正方形;图形乙是一个长方形a24ab+4b2=4 ab=60考点:完全平方公式的几何背景菁优网版权所有专题:数形结合分析:根据图形的面积公式来进行分析即可得到解答:解:(1)(a+b)2(ab)2=4ab;(2)4 ab=60点评:该题目考查了利用图形的面积来得到数学公式,关键是灵活进行数学结合来分析15【
25、学习回顾】我们已经知道,根据几何图形的面积关系可以说明完全平方公式,说明如下:如图1,正方形abcd的面积=正方形ebnh的面积+(长方形aehm的面积+长方形hncf的面积)+正方形mhfd的面积即:(a+b)2=a2+2ab+b2【思考问题】还有一些等式也可以用上述方式加以说明,请你尝试完成如图2,长方形abnm的面积=长方形ebcf的面积+长方形aefd的面积长方形hncf的面积正方形mhfd的面积,即:(2ab)(a+b)=2a2abb2【尝试实践】计算(2a+b)(a+b)=2a2+3ab+b2仿照上述方法,画图并说明考点:完全平方公式的几何背景菁优网版权所有分析:(1)利用长方形a
26、bnm的面积=长方形ebcf的面积+长方形aefd的面积长方形hncf的面积正方形mhfd的面积计算(2)利用长方形abcd的面积=正方形gbhf的面积+正方形fhqn的面积+长方形agfe的面积+长方形efnm的面积+长方形nqco的面积+正方形mnod的面积计算解答:解:(1)长方形abnm的面积=长方形ebcf的面积+长方形aefd的面积长方形hncf的面积正方形mhfd的面积,即:(2ab)(a+b)=2a2abb2故答案为:正方形mhfd,2a2abb2(2)(2a+b)(a+b)=2a2+3ab+b2如图,故答案为:2a2abb2点评:本题主要考查了完全平方公式的几何背景,解题的关
27、键是通过几何图形之间的数量关系对公式做出几何解释16阅读下列文字,我们知道对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2请解答下列问题:(1)写出图2中所表示的数学等式(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片若干个长为a和宽为b的长方形纸片,利用所给的纸片拼出一个几何图形,使得计算它的面积能得到数学公式:2a2+5ab+2
28、b2=(2a+b)(a+2b)考点:完全平方公式的几何背景菁优网版权所有分析:(1)根据数据表示出矩形的长与宽,再根据矩形的面积公式写出等式的左边,再表示出每一小部分的矩形的面积,然后根据面积相等即可写出等式(2)根据利用(1)中所得到的结论,将a+b+c=11,ab+bc+ac=38作为整式代入即可求出(3)找规律,根据公式画出图形,拼成一个长方形,使它满足所给的条件解答:解:(1)根据题意,大矩形的面积为:(a+b+c)(a+b+c)=(a+b+c)2,各小矩形部分的面积之和=a2+2ab+b2+2bc+2ac+c2,等式为(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(2)a
29、2+b2+c2 =(a+b+c)22ab2ac2bc=1122×38=45(3)如图所示点评:本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答17如图1,将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形(1)图2的空白部分的边长是多少?(用含ab的式子表示)(2)若2a+b=7,且ab=3,求图2中的空白正方形的面积(3)观察图2,用等式表示出(2ab)2,ab和(2a+b)2的数量关系考点:完全平方公式的几何背景菁优网版权所有分析:(1)观察由已知图形,得到四个小
30、长方形的长为2a,宽为b,那么图2中的空白部分的正方形的边长是小长方形的长减去小长方形的宽(2)通过观察图形,大正方形的边长为小长方形的长和宽的和图2中空白部分的正方形的面积为大正方形的面积减去四个小长方形的面积(3)通过观察图形知:(2a+b)2 (2ab)2 8ab分别表示的是大正方形、空白部分的正方形及小长方形的面积解答:解:(1)图2的空白部分的边长是2ab(2)由图212可知,小正方形的面积=大正方形的面积4个小长方形的面积,大正方形的边长=2a+b=7,大正方形的面积=(2a+b)2=49,又4个小长方形的面积之和=大长方形的面积=4a×2b=8ab=8×3=2
31、4,小正方形的面积=(2ab)2=4924=25(3)由图2可以看出,大正方形面积=空白部分的正方形的面积+四个小长方形的面积即:(2a+b)2(2ab)2=8ab点评:此题考查了学生观察、分析图形解答问题的综合能力,以及对列代数式、代数式求值的理解与掌握关键是通过观察图形找出各图形之间的关系18动手操作:如图是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图所示拼成一个正方形提出问题:(1)观察图,请用两种不同的方法表示阴影部分的面积;(2)请写出三个代数式(a+b)2,(ab)2,ab之间的一个等量关系问题解决:根据上述(2)中得到的等量关系,解决下列问
32、题:已知:x+y=6,xy=3求:(xy)2的值考点:完全平方公式的几何背景菁优网版权所有专题:几何图形问题分析:(1)第一种方法为:大正方形面积4个小长方形面积,第二种表示方法为:阴影部分正方形的面积;(2)利用(a+b)24ab=(ab)2可求解解答:提出问题:解:(1)(a+b)24ab或(ab)2(2)(m+n)24mn=(mn)2问题解决:(3)(xy)2=(x+y)24xyx+y=6,xy=3(xy)2=369=25点评:本题考查了完全平方公式的几何背景解决问题的关键是读懂题意,找到所求的量的等量关系本题更需注意要根据所找到的规律做题19图是一个长为2a,宽为2b的长方形,沿图中虚
33、线剪开,可分成四块小长方形(1)将图中所得的四块长为a,宽为b的小长方形拼成一个正方形(如图)请利用图中阴影部分面积的不同表示方法,直接写出代数式(a+b)2、(ab)2、ab之间的等量关系是(ab)2=(a+b)24ab;(2)根据(2)题中的等量关系,解决如下问题:已知m+n=8,mn=7,则mn=±6;(3)将如图所得的四块长为a,宽为b的小长方形不重叠地放在长方形abcd的内部(如图),未被覆盖的部分(两个长方形)用阴影表示若左下角与右上角的阴影部分的周长之差为4,且小长方形的周长为8,则每一个小长方形的面积为3考点:完全平方公式的几何背景菁优网版权所有分析:(1)利用大正方
34、形的面积减4个小长方形的面积等于小正方形的面积求解;(2)利用公式(mn)2=(m+n)24mn求解即可;(3)由左下角与右上角的阴影部分的周长之差为4,得出8b+4a=4,由小长方形的周长为8,得出2(a+b)=8,联立得出a,b的值即可求出小长方形的面积解答:解:(1)(ab)2=(a+b)24ab故答案为:(ab)2=(a+b)24ab(2)m+n=8,mn=7,(mn)2=(m+n)24mn=6428=36,mn=±6故答案为:±6(3)设长方形bc为m,cd为n,右上角部分的阴影周长为:2(na+ma) 左下角部分的阴影周长为:2(m2b+n2b) 左下角与右上角
35、的阴影部分的周长之差为4,8b+4a=4,又2(a+b)=8,解得a=3,b=1,每一个小长方形的面积为ab=3×1=3故答案为:3点评:本题考查了完全平方公式的几何背景,解题的关键是通过几何图形之间的数量关系解决问题20把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积(1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的方法计算这个图形的面积,你能发现什么结论,请写出来(2)如图2,是将两个边长分别为a和b的正方形拼在一起,b、c、g三点在同一直线上,连接bd和bf,若两正方形的边长
36、满足a+b=10,ab=20,你能求出阴影部分的面积吗?考点:完全平方公式的几何背景菁优网版权所有分析:(1)此题根据面积的不同求解方法,可得到不同的表示方法一种可以是3个正方形的面积和6个矩形的面积,种是大正方形的面积,可得等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,(2)利用s阴影=正方形abcd的面积+正方形ecgf的面积三角形bgf的面积三角形abd的面积求解解答:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2)a+b=10,ab=20,s阴影=a2+b2(a+b)ba2=a2+b2ab=(a+b)2ab=×102×20=5
37、030=20点评:本题考查了完全平方公式几何意义,解题的关键是注意图形的分割与拼合,会用不同的方法表示同一图形的面积21阅读材料并填空:我们知道,完全平方式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式样也可以用这种形式表示,如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图(1),或图(2)等图形的面积表示请你写出图(3)所表示的代数恒等式(x+y)2=x2+2xy+y2请你写出图(4)所表示的代数恒等式(2a+b)(a+2b)=2a2+5ab+2b2考点:完全平方公式的几何背景菁优网版权所有分析:求出长方形的长和宽,根据长方形的面积公式求出即可解答:解:图(3)所表示的代数恒等式是(x+y)(x+y)=(x+y)2=x2+2xy+y2,图(4)所表示的代数恒等式是(2a+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省成都市(2024年-2025年小学五年级语文)部编版阶段练习((上下)学期)试卷及答案
- 台湾省(2024年-2025年小学五年级语文)部编版期末考试((上下)学期)试卷及答案
- 内蒙古呼伦贝尔市(2024年-2025年小学五年级语文)部编版专题练习((上下)学期)试卷及答案
- 2024新版(粤教沪教版)三年级英语上册单词带音标
- 第一章+第三节+研究幼儿心理的方法(课件)-《幼儿心理学》(人教版第二版)
- 人事专员绩效考核方案
- 2024年电大民族理论与民族政策试题及答案
- 1电能的获得和转化(原卷版)
- 历史文化街区改造运输协议
- 儿童游乐场装修附加合同
- 广告位租赁协议
- 数据结构查找实验报告
- 电大会计模拟实验答案
- 新人教版初中物理实验一览表
- 红色艺术欣赏诗词《七绝 赠父诗》
- cad上机考试试题
- 威海社区工作者考试真题及答案2022
- 台湾公司法内容
- 项目复盘报告PPT通用模板
- PLC技术应用知到章节答案智慧树2023年威海职业学院
- 2023年江西省书记员招聘笔试题库及答案解析
评论
0/150
提交评论