三大统计软件SASSTATASPSS比较_第1页
三大统计软件SASSTATASPSS比较_第2页
三大统计软件SASSTATASPSS比较_第3页
三大统计软件SASSTATASPSS比较_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、三大统计软件:SAS Stata与SPSS比较Strategically using General Purpose Statistics Packages:A Look at Stata, SAS and SPSS中文版(自英文版本翻译):很多人曾问及SAS Stata 和 SPSS之间的不同,它们之中哪个是最好的。 可以想到, 每个软件都有自己独特的风格, 有自己的优缺点。 本文对此做了概述, 但并不是一个综合的 比较。人们时常会对自己所使用的统计软件有特别的偏好, 希望大多数人都能认同这是对这 些软件真实而公允的一个对比分析。SAS一般用法。 SAS 由于其功能强大而且可以编程,很受高级

2、用户的欢迎。也正是基于此, 它是最难掌握的软件之一。使用 SAS时,你需要编写SAS程序来处理数据,进行分析。如果 在一个程序中出现一个错误,找到并改正这个错误将是困难的。数据管理。在数据管理方面,SAS是非常强大的,能让你用任何可能的方式来处理你的 数据。它包含SQL(结构化查询语言)过程,可以在SAS数据集中使用 SQL查询。但是要学习并掌握SAS软件的数据管理需要很长的时间,在Stata或SPS冲,完成许多复杂数据管理工作所使用的命令要简单的多。然而,SAS可以同时处理多个数据文件,使这项工作变得容易。它可以处理的变量能够达到 32,768 个,以及你的硬盘空间所允许的最大数量的记录条

3、数。统计分析。SAS能够进行大多数统计分析(回归分析,logistic回归,生存分析,方差分析,因子分析,多变量分析)。SAS的最优之处可能在于它的方差分析,混合模型分析和多变量分析,而它的劣势主要是有序和多元 logistic 回归(因为这些命令很难),以及稳健方 法(它难以完成稳健回归和其他稳健方法)。尽管支持调查数据的分析,但与Stata比较仍然是相当有限的。绘图功能。在所有的统计软件中,SAS有最强大的绘图工具,由 SAS/Graph模块提供。然而, SAS/Graph 模块的学习也是非常专业而复杂,图形的制作主要使用程序语言。SAS 8虽然可以通过点击鼠标来交互式的绘图,但不象SPS

4、S那样简单。总结。SAS适合高级用户使用。它的学习过程是艰苦的,最初的阶段会使人灰心丧气。 然而它还是以强大的数据管理和同时处理大批数据文件的功能,得到高级用户的青睐。Stata一般用法。 Stata 以其简单易懂和功能强大受到初学者和高级用户的普遍欢迎。使用时 可以每次只输入一个命令(适合初学者),也可以通过一个Stata程序一次输入多个命令(适 合高级用户)。这样的话,即使发生错误,也较容易找出并加以修改。数据管理。尽管Stata的数据管理能力没有 SAS那么强大,它仍然有很多功能较强且简 单的数据管理命令,能够让复杂的操作变得容易。 Stata 主要用于每次对一个数据文件进行 操作,难以

5、同时处理多个文件。随着Stata/SE的推出,现在一个 Stata数据文件中的变量可以达到 32,768,但是当一个数据文件超越计算机内存所允许的范围时,你可能无法分析它。统计分析。 Stata 也能够进行大多数统计分析(回归分析, logistic 回归,生存分析,方 差分析,因子分析,以及一些多变量分析)。 Stata 最大的优势可能在于回归分析(它包含 易于使用的回归分析特征工具),logistic回归(附加有解释logistic回归结果的程序,易用 于有序和多元 logistic 回归)。 Stata 也有一系列很好的稳健方法,包括稳健回归,稳健标准 误的回归,以及其他包含稳健标准误估

6、计的命令。此外,在调查数据分析领域, Stata 有着 明显优势,能提供回归分析, logistic 回归,泊松回归,概率回归等的调查数据分析。它的 不足之处在于方差分析和传统的多变量方法(多变量方差分析,判别分析等)。绘图功能。正如 SPSS stata能提供一些命令或鼠标点击的交互界面来绘图。与SPSS不同的是它没有图形编辑器。 在三种软件中, 它的绘图命令的句法是最简单的, 功能却最强大。 图形质量也很好, 可以达到出版的要求。 另外,这些图形很好的发挥了补充统计分析的功能, 例如,许多命令可以简化回归判别过程中散点图的制作。总结。 Stata 较好地实现了使用简便和功能强大两者的结合。

7、尽管其简单易学,它在数 据管理和许多前沿统计方法中的功能还是非常强大的。 用户可以很容易的下载到别人已有的 程序,也可以自己去编写,并使之与 Stata 紧密结合。SPSS一般用法。SPSS非常容易使用,故最为初学者所接受。它有一个可以点击的交互界面, 能够使用下拉菜单来选择所需要执行的命令。它也有一个通过拷贝和粘贴的方法来学习其 “句法”语言,但是这些句法通常非常复杂而且不是很直观。数据管理。SPSS有 一个类似于Excel的界面友好的数据编辑器,可以用来输入和定义数 据(缺失值,数值标签等等)。它不是功能很强的数据管理工具(尽管SPS 11 版增加了一些增大数据文件的命令,其效果有限)。S

8、PSS也主要用于对一个文件进行操作,难以胜任同时处理多个文件。 它的数据文件有 4096 个变量,记录的数量则是由你的磁盘空间来限定。统计分析。SPSS也能够进行大多数统计分析(回归分析, logistic回归,生存分析,方 差分析,因子分析,多变量分析)。它的优势在于方差分析(SPSS 能完成多种特殊效应的检验)和多变量分析(多元方差分析,因子分析,判别分析等),SPSS11.5版还新增了混合模型分析的功能。其缺点是没有稳健方法 (无法完成稳健回归或得到稳健标准误) ,缺乏调 查数据分析(SPSS12版增加了完成部分过程的模块)。绘图功能。 SPSS 绘图的交互界面非常简单,一旦你绘出图形,

9、你可以根据需要通过点 击来修改。 这种图形质量极佳, 还能粘贴到其他文件中 ( Word 文档或 Powerpoint 等)。 SPSS 也有用于绘图的编程语句,但是无法产生交互界面作图的一些效果。这种语句比Stata 语句难,但比SAS语句简单(功能稍逊)。总结。SPSS致力于简便易行(其口号是“真正统计,确实简单”),并且取得了成功。 但是如果你是高级用户,随着时间推移你会对它丧失兴趣。SPSS 是制图方面的强手,由于缺少稳健和调查的方法,处理前沿的统计过程是其弱项。总体评价每个软件都有其独到之处,也难免有其软肋所在。总的来说,SAS Stata和SPSS是能够用于多种统计分析的一组工具。

10、 通过 Stat/Transfer 可以在数秒或数分钟内实现不同数据文 件的转换。 因此,可以根据你所处理问题的性质来选择不同的软件。举例来说,如果你想通 过混合模型来进行分析,你可以选择SAS进行logistic回归则选择Stata ;若是要进行方差分析,最佳的选择当然是SPSS假如你经常从事统计分析,强烈建议您把上述软件收集到你的工具包以便于数据处理。English Version:SASGeneral use. SAS is a package that many "power users" like because of its power and programm

11、ability. Because SAS is such a powerful package, it is also one of the most difficult to learn. To use SAS,you write SAS programs that manipulate your data and perform your data analyses. If you make a mistake in a SAS program, it can be hard to see where the error occurred or how to correct it.Data

12、 Management. SAS is very powerful in the area of data management, allowing you to manipulate your data in just about any way possible. SAS includes proc sql that allows you to perform sql queries on your SAS data files. However, it can take a long time to learn and understand data management in SAS

13、and many complex data management tasks can be done using simpler commands in Stata or SPSS. However, SAS can work with many data files at once easing tasks that involve working with multiple files at once. SAS can handle enormous data files up to 32,768 variables and the number of records is general

14、ly limited to the size of your hard disk.Statistical Analysis. SAS performs most general statistical analyses (regression, logistic regression, survival analysis, analysis of variance, factor analysis, multivariate analysis). The greatest strengths of SAS are probably in its ANOVA, mixed model analy

15、sis and multivariate analysis, while it is probably weakest in ordinal and multinomial logistic regression (because these commands are especially difficult), robust methods (it is difficult to perform robust regression, or other kinds of robust methods). While there is some support for the analysis

16、of survey data, it is quite limited as compared to Stata.Graphics. SAS may have the most powerful graphic tools among all of the packages via SAS/Graph. However, SAS/Graph is also very technical and tricky to learn. The graphs are created largely using syntax language; however, SAS 8 does have a poi

17、nt and click interface for creating graphs but it is not as easy to use as SPSS.Summary. SAS is a package geared towards power users. It has a steep learning curve and can be frustrating at first. However, power users enjoy the its powerful data management and ability to work with numerous data file

18、s at once.StataGeneral Use. Stata is a package that many beginners and power users like because it is both easy to learn and yet very powerful. Stata uses one line commands which can be entered one command at a time (a mode favored by beginners) or can be entered many at a time in a Stata program (a

19、 mode favored by power users). Even if you make a mistake in a Stata command, it is often easy to diagnose and correct the error.Data Management. While the data management capabilities of Stata may not be quite as extensive as those of SAS, Stata has numerous powerful yet very simple data management

20、 commands that allows you to perform complex manipulations of your data with ease. However, Stata primarily works with one data file at a time so tasks that involve working with multiple files at once can be cumbersome. With the release of Stata/SE, you can now have up to 32,768 variables in a Stata

21、 data file but probably would not want to analyze a data file that exceeds the size of your computers memory.Statistical Analysis . Stata performs most general statistical analyses (regression, logistic regression, survival analysis, analysis of variance, factor analysis, and some multivariate analy

22、sis). The greatest strengths of Stata are probably in regression (it has very easy to use regression diagnostic tools), logistic regression, (add on programs are available that greatly simplify the interpretation of logistic regression results, and ordinal logistic and multinomial logistic regressio

23、ns are very easy to perform). Stata also has a very nice array of robust methods that are very easy to use, including robust regression, regression with robust standard errors, and many other estimation commands include robust standard errors as well. Stata also excels in the area of survey data ana

24、lysis offering the ability to analyze survey data for regression, logistic regression, poisson regression, probit regression, etc.). The greatest weaknesses in this area would probably be in the area of analysis of variance and traditional mutivariate methods (e.g. manova, discriminant analysis, etc

25、.).Graphics. Like SPSS, Stata graphics can be created using Stata commands or using a point and click interface. Unlike SPSS, the graphs cannot be edited using a graph editor. The syntax of the graph commands is the easiest of the three packages and is also the most powerful. Stata graphs are high q

26、uality, publication quality graphs. In addition, Stata graphics are very functional for supplementing statistical analysis, for example there are numerous commands that simplify the creation of plots for regression diagnostics.Summary. Stata offers a good combination of ease of use and power. While

27、Stata is easy to learn, it also has very powerful tools for data management, many cutting edge statistical procedures, the ability to easily download programs developed by other users and the ability to create your own Stata programs that seamlessly become part of Stata.SPSSGeneral use. SPSS is a pa

28、ckage that many beginners enjoy because it is very easy to use. SPSS has a "point and click" interface that allows you to use pulldown menus to select commands that you wish to perform. SPSS does have a "syntax" language which you can learn by "pasting" the syntax from

29、the point and click menus, but the syntax that is pasted is generally overly complicated and often unintuitive.Data Management. SPSS has a friendly data editor that resembles Excel that allows you to enter your data and attributes of your data (missing values, value labels, etc.) However, SPSS does

30、not have very strong data management tools (although SPSSversion 11 added commands for reshaping data files from "wide" format to "long" format, and vice versa). SPSS primarily edits one data file at a time and is not very strong for tasks that involve working with multiple data

31、files at once. SPSS data files can have 4096 variables and the number of records is limited only by your disk space.Statistical Analysis. SPSS performs most general statistical analyses (regression, logistic regression, survival analysis, analysis of variance, factor analysis, and multivariate analy

32、sis). The greatest strengths of SPSSare in the area of analysis of variance (SPSSallows you to perform many kinds of tests of specific effects) and multivariate analysis (e.g. manova, factor analysis, discriminant analysis) and SPSS 11 has added some capabilities for analyzing mixed models. The grea

33、test weakness of SPSSare probably in the absence of robust methods (we know of no abilities to perform robust regression or to obtain robust standard errors), the absence of survey data analysis (we know of no tools in this area).Graphics. SPSS has a very simple point and click interface for creatin

34、g graphs and once you create graphs they can be extensively customized via its point and click interface. The graphs are very high quality and can be pasted into other documents (e.g. word documents or powerpoint). SPSS does have a syntax language for creating graphs but many of the features in the point and click interface are not available via the syntax language. The syntax language is more complicated than the language provided by Stata, but probably simpler (but less powerful) than the SAS language.Summary.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论