带电粒子在复合场中运动_第1页
带电粒子在复合场中运动_第2页
带电粒子在复合场中运动_第3页
带电粒子在复合场中运动_第4页
带电粒子在复合场中运动_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题 带电粒子在复合场中的运动【命题趋向】带电粒子在复合场中的运动是高中物理的一个难点,也是高考的热点。在历年的高考试题中几乎年年都有这方面的考题。带电粒子在磁场中的运动问题,综合性较强,解这类问题既要用到物理中的洛仑兹力、圆周运动的知识,又要用到数学中的平面几何中的圆及解析几何知识。带电粒子在复合场中的运动包括带电粒子在匀强电场、交变电场、匀强磁砀及包含重力场在内的复合场中的运动问题,是高考必考的重点和热点。纵观近几年各种形式的高考试题,题目一般是运动情景复杂、综合性强,多把场的性质、运动学规律、牛顿运动定律、功能关系以及交变电场等知识有机地结合,题目难度中等偏上,对考生的空间想像能力、物理

2、过程和运动规律的综合分析能力,及用数学方法解决物理问题的能力要求较高,题型有选择题,填空题、作图及计算题,涉及本部分知识的命题也有构思新颖、过程复杂、高难度的压轴题。【知识点梳理】一.复合场的分类1.叠加场:电场、磁场、重力场共存,或其中某两场共存.2.组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现.说明:一般地,对于微观粒子,如电子、质子、离子等不计重力,而一些实际物体,如带电小球、液滴等应考虑其重力有时也可由题设条件,结合受力与运动分析,确定是否考虑重力二.带电粒子在组合场中运动带电粒子在组合场中的运动过程比较复杂,但如果认真分析其运动过程会发现,粒子

3、的运动过程实际上是几个运动过程的组合,只要认真分析每个过程,找出其所满足的物理规律,并找出各个过程之间的衔接点和相关联的物理量,问题便可迎刃而解.1.先电场后磁场模型(1)先在电场中做加速直线运动,然后进入磁场做圆周运动.(如图1、2所示)在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度.图1图2 图3 图4(2)先在电场中做类平抛运动,然后进入磁场做圆周运动.(如图3、4所示)在电场中利用平抛运动知识求粒子进入磁场时的速度.2.先磁场后电场模型对于粒子从磁场进入电场的运动,常见的有两种情况:(1)进入电场时粒子速度方向与电场方向相同或相反;(2)进入电场时粒子速度方向与电场方向垂直.

4、(如图5、6所示)图5图6三带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存若重力和洛伦兹力平衡,则带电体做匀速直线运动.若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)若电场力和洛伦兹力平衡,则带电体做匀速直线运动.若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存若三力平衡,一定做匀速直线运动.若重力与电场力平衡,一定做匀速圆周运动.若合力不为零且与速度方向不垂直,将做复杂的

5、曲线运动,因洛伦兹力不做功,可用能量守恒定律或动能定理求解问题.2.带电粒子在叠加场中有约束情况下的运动带电粒子在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求解.【巩固练习】1.如图所示,在同时存在匀强电场和匀强磁场的空间中取正交坐标系Oxyz,一质量为m、电荷量为q的带正电粒子(重力不可忽略)从原点O以速度v沿x轴正方向出发,下列说法错误的是(A)A.若电场、磁场分别沿z轴正方向和x轴正方向,粒子只能做曲线运动B.若电场、磁场均沿z轴正

6、方向,粒子有可能做匀速圆周运动 C.若电场、磁场分别沿z轴负方向和y轴负方向,粒子有可能做匀速直线运动D.若电场、磁场分别沿y轴负方向和z轴正方向,粒子有可能做平抛运动2(·高考北京理综)如图所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场一带电粒子a(不计重力)以一定的初速度由左边界的O点射入磁场、电场区域,恰好沿直线由区域右边界的O点(图中未标出)穿出若撤去该区域内的磁场而保留电场不变,另一个同样的粒子b(不计重力)仍以相同初速度由O点射入,从区域右边界穿出,则粒子b(C)A穿出位置一定在O点下方B穿出位置一定在O点上方C运动时,在电场中的电势能一定减小D在电场

7、中运动时,动能一定减小【解析】本题考查带电粒子在磁场和电场中的运动,意在考查考生发散思维的能力带电粒子的电性可正也可负,当只有电场作用时,粒子穿出位置可能在O点上方,也可能在O点下方电场力一定对粒子做正功,粒子的电势能减小,动能一定增加3(·广东)如图所示,表面粗糙的斜面固定于地面上,并处于方向垂直纸面向外、强度为B的匀强磁场中质量为m、带电量为Q的小滑块从斜面顶端由静止下滑在滑块下滑的过程中,下列判断正确的是 (C)A滑块受到的摩擦力不变B滑块到达地面时的动能与B的大小无关C滑块受到的洛伦兹力方向垂直斜面向下DB很大时,滑块可能静止于斜面上【解析】本题考查洛伦兹力意在考查考生对带电

8、物体在磁场中运动的受力分析滑块受重力、支持力、洛伦兹力、摩擦力,如图所示由左手定则首先容易判断洛伦兹力的方向为垂直斜面向下,C正确;由f洛QvB,当速度发生变化时,洛伦兹力变化,由FNf洛mgcos,支持力也随之变化,由fFN知摩擦力也随之变化,A错误;磁场B的大小最终影响摩擦力的大小,影响滑块到达地面的过程中摩擦力做功的大小,滑块到达地面时的动能与B的大小有关,B错误;滑块从斜面顶端由静止下滑,所以中间不可能静止在斜面上,D错误4(·高考辽宁、宁夏理综)医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度电磁血流计由一对电极a和b以及一对磁极N和S构成,磁极间的磁场是均匀的

9、使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图所示由于血液中的正负离子随血流一起在磁场中运动,电极a、b之间会有微小电势差在达到平衡时,血管内部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零在某次监测中,两触点间的距离为3.0mm,血管壁的厚度可忽略,两触点间的电势差为160V,磁感应强度的大小为0.040T.则血流速度的近似值和电极a、b的正负为(A)A1.3m/s,a正、b负B2.7m/s,a正、b负C1.3m/s,a负、b正 D2.7m/s,a负、b正【解析】本题考查带电粒子在复合场中的运动、磁流体发电机、左手定则等知识点,意在

10、考查考生对带电粒子在复合场中的运动、力的平衡、左手定则的综合运用能力根据左手定则,可知a正b负,所以CD错误;因为离子在场中所受合力为零,Bqvq,所以v1.3m/s,A正确B错误5(·高考广东卷)如图是质谱仪的工作原理示意图带电粒子被加速电场加速后,进入速度选择器速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有强度为B0的匀强磁场下列表述正确的是(ABC)A质谱仪是分析同位素的重要工具B速度选择器中的磁场方向垂直纸面向外C能通过狭缝P的带电粒子的速率等于E/BD粒子打在胶片上的位置越靠近狭缝P,粒子

11、的比荷越小【解析】本题考查质谱仪的工作原理,意在考查考生分析带电粒子在电场、磁场中的受力和运动的能力粒子先在电场中加速,进入速度选择器做匀速直线运动,最后进入磁场做匀速圆周运动在速度选择器中受力平衡:EqqvB得vE/B,方向由左手定则可知磁场方向垂直纸面向外,BC正确;进入磁场后,洛伦兹力提供向心力,qvB0得,R,所以比荷不同的粒子偏转半径不一样,所以,A正确;D错误6.直角坐标系xOy中与x轴成45°角的界线OM两侧区域分别有如图22所示电、磁场(第三象限除外),匀强磁场磁感应强度为B、方向垂直纸面向外,匀强电场场强EvB、方向沿x轴负方向.一不计重力的带正电的粒子,从坐标原点

12、O以速度为v、沿x轴负方向射入磁场,随后从界线上的 P点沿垂直电场方向进入电场,并最终飞离电、磁场区域.已知粒子的电荷量为q,质量为m,求: (1)粒子在磁场中运动的轨迹半径R及P点的位置坐标;(2)粒子在磁场中运动的时间;(3)粒子最终飞离电、磁场区域的位置坐标.答案(1)(,)(2)(3)0,(1)解析(1)由洛伦兹力提供向心力,有:qvBm 解得:R粒子的运动轨迹如图所示,由几何关系可知,粒子经过界线OM的位置P的坐标为(,)(2)粒子在磁场中运动的周期T粒子在磁场中运动的时间tT(3)粒子从P点射入电场后将做类平抛运动,如图所示,有:Rat2 xvt其中:a联立式解得x故粒子最终飞离电

13、、磁场区域的位置坐标为0,(1)7如图所示,水平放置的M、N两平行板相距为d0.50 m,板长为L1 m,两板间有向下的匀强电场,场强E300.0 N/C,紧靠平行板右侧边缘的xOy直角坐标系以N板右端点O为原点,在xOy坐标系的第一象限内如图所示部分有垂直纸面向外的匀强磁场,磁感应强度B×102 T,磁场边界OA与x轴夹角AOx60°,现有比荷为×106 C/kg的带电粒子(重力不计),从极板左侧沿靠近M板的水平线垂直电场方向进入电场,离开电场后垂直于OA边界进入磁场区域,求:(1)带电粒子进入电场时的初速度v0;(2)带电粒子从进入电场到离开磁场的总时间.答案

14、(1)3×104 m/s(2)()×104 s解析(1)带电粒子要垂直射入磁场,则速度偏向角为30°有tan 30° vyat 解得v03×104 m/s(2)粒子在电场中的运动时间为t1×104 s粒子在电场中的偏转距离为yat2 m粒子离开电场的速度v2 ×104 m/s粒子离开电场后做匀速直线运动,直线运动距离s2(dy)sin 30° m运动时间t2 ×104 s设粒子进入磁场后的轨道半径为R,R m粒子运动轨迹如图所示,则sOG(dy)sin 60° m由正弦定理有得30°由

15、此可知,带电粒子在磁场中的偏转角度为30°由在磁场中的运动时间为t3×104 s则总运动时间:tt1t2t3()×104 s8.(·辽宁、宁夏理综)如图所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直一质量为m、电荷量为q(q>0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场粒子在磁场中的运动轨迹与y轴交于M点已知OPl,OQ2l.不计重力求:(1)M点与坐标原点O间的距离;(2)粒子从P点运动到M点所用的时间【解析】(1)带电粒子在电场中做

16、类平抛运动,沿y轴负方向上做初速度为零的匀加速运动,设加速度的大小为a;在x轴正方向上做匀速直线运动,设速度为v0;粒子从P点运动到Q点所用的时间为t1,进入磁场时速度方向与x轴正方向的夹角为,则at1v0其中x02l,y0l.又有tan联立式,得30°因为M、O、Q点在圆周上,MOQ90°,所以MQ为直径从图中的几何关系可知,R2lMO6l(2)设粒子在磁场中运动的速度为v,从Q到M点运动的时间为t2,则有vt2带电粒子自P点出发到M点所用的时间t为tt1t2联立式,并代入数据得t(1).10(·高考重庆理综)如图,离子源A产生的初速度为零、带电荷量均为e、质量

17、不同的正离子被电压为U0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM上的小孔S离开电场,经过一段匀速直线运动,垂直于边界MN进入磁感应强度为B的匀强磁场已知HOd,HS2d,MNQ90°.(忽略离子所受重力)(1)求偏转电场场强E0的大小以及HM与MN的夹角;(2)求质量为4m的离子在磁场中做圆周运动的半径;(3)若质量为4m的离子垂直打在NQ的中点S1处,质量为16m的离子打在S2处,S1和S2之间的距离以及能打在NQ上的正离子的质量范围【解析】(1)由得E0U0/d由tan得45°(2)由得R2将4m代入上式得质量为4m的离子在磁场中做圆周运

18、动的半径为4(3)将4m和16m代入R,得R1、R2,由SR1,将R1、R2代入得S4(1)由R2(2R1)2(RR1)2得RR1由R1<R<R1得m<mx<25mmg甲V0qE11如图所示,一质量为m、电量为+q的带电小球以与水平方向成某一角度的初速度v0射入水平方向的匀强电场中,小球恰能在电场中做直线运动若电场的场强大小不变,方向改为相反同时加一垂直纸面向外的匀强磁场,小球仍以原来的初速度重新射人,小球恰好又能做直线运动求电场强度的大小、磁感应强度的大小和初速度与水平方向的夹角。v0E解:在没有磁场,只有电场时,设小球的运动方向与水平方向的夹角为受力情况如图甲所示根

19、据已知得: 在既有磁场又有电场时,E不变,受力情况如图乙,由几 何知识得450 小球仍做直线运动,有: 解得:B E12如图8-4-4甲所示,匀强电场方向水平向右,匀强磁场垂直于纸面向里。一质量为m、带电量为q的微粒以速度v与磁场垂直、与电场成450角射入复合场中恰好做匀速直线运动,求电场E的大小及磁场B的大小。【解析】若微粒带负电,微粒受到的重力向下,电场力水平向左,洛伦兹力垂直于速度v方向斜向下,微粒不能平衡,若微粒带正电,粒子受力如图8-4-4乙所示。 由平衡条件可得 由 得。13如图所示,质量为m、电荷量为q的小球套在竖直放置的绝缘杆上,球与杆的动摩擦因素为,匀强电场与匀强磁场的方向如

20、图所示,电场强度为E,磁感应强度为B。小球由静止释放后沿杆下滑。设杆足够长,电场与磁场的范围足够大,求球运动过程中小球的最大加速度和最大速度。【解析】设小球带正电,小球在不同的阶段受力情况有不同,在开始阶段受力分析如图8-4-6甲所示随着速度的增加,受力情况为图8-4-6乙所示。速度较小时:水平方向受力平衡,有速度增大,弹力N减小,做加速度减小的加速运动,摩擦力减小,当时,摩擦力f=0,,此时,加速度最大a=g;速度较大时:小球做加速度减小的加速运动,又有 所以:;当a=0时,速度最大14如图所示,在>0的空间中,存在沿轴方向的匀强电场,电场强度10N/C;在x<0的空间中,存在垂

21、直xy平面方向的匀强磁场,磁感应强度B0.5T。一带负电的粒子(比荷)在x0.06m处的d点以8m/s的初速度沿y轴正方向开始运动,不计带电粒子的重力。求: (1)带电粒子开始运动后第一次通过y轴时距O点的距离。 (2)带电粒子进入磁场后经多长时间返回电场。 (3)带电粒子运动的周期。【解析】(1)对于粒子在电场中的运动有,第一次通过y轴的交点到O点的距离为;xy(2)x方向的速度,设进入磁场时速度与y轴正方向的夹角为,故,所以在磁场中作圆周运动所对应的圆心角为,带电粒子在磁场中做匀速圆周运动周期为,带电粒子在磁场中运动的时间;(3)从开始至第一次到达y轴的时间,从磁场再次回到电场中的过程(未

22、进入第二周期)是第一次离开电场时的逆运动,根据对称性,因此粒子的运动周期为。15.(2013·山东·23)如图所示,在坐标系xOy的第一、第三象限内存在相同的匀强磁场,磁场方向垂直于xOy平面向里;第四象限内有沿y轴正方向的匀强电场,电场强度大小为E.一带电荷量为q、质量为m的粒子,自y轴上的P点沿x轴正方向射入第四象限,经x轴上的Q点进入第一象限,随即撤去电场,以后仅保留磁场.已知OPd,OQ2d.不计粒子重力. (1)求粒子过Q点时速度的大小和方向.(2)若磁感应强度的大小为一确定值B0,粒子将沿垂直y轴的方向进入第二象限,求B0.(3)若磁感应强度的大小为另一确定值,

23、经过一段时间后粒子将再次经过Q点,且速度与第一次过Q点时相同,求该粒子相邻两次经过Q点所用的时间.答案(1)2 ,方向斜向上与x轴正方向成45°角(2) (3)(2) 解析(1)设粒子在电场中运动的时间为t0,加速度的大小为a,粒子的初速度为v0,过Q点时速度的大小为v,沿y轴方向分速度的大小为vy,速度与x轴正方向间的夹角为,由牛顿第二定律得qEma由运动学公式得dat2dv0t0vyat0vtan 联立式得v245°(2)设粒子做圆周运动的半径为R1,粒子在第一象限的运动轨迹如图所示,O1为圆心,由几何关系可知O1OQ为等腰直角三角形,得R12d由牛顿第二定律得qvB0

24、m联立式得B0(3)设粒子做圆周运动的半径为R2,由几何知识分析知,粒子运 动的轨迹如图所示,O2、O2是粒子做圆周运动的圆心,Q、F、G、H是轨迹与两坐标轴的交点,连接O2、O2,由几何关系知,O2FGO2和O2QHO2均为矩形,进而知FQ、GH均为直径,QFGH也是矩形,又FHGQ,可知QFGH是正方形,QOF为等腰直角三角形.由此可知,粒子在第一、第三象限的轨迹均为半圆,得2R22d粒子在第二、第四象限的轨迹为长度相等的线段,得FG HQ2R2设粒子相邻两次经过Q点所用的时间为t,则有t联立式得t(2) 16如图所示,在一竖直平面内,y轴左方有一水平向右的场强为E1的匀强电场和垂直于纸面

25、向里的磁感应强度为B1的匀强磁场,y轴右方有一竖直向上的场强为E2的匀强电场和另一磁感应强度为B2的匀强磁场.有一带电荷量为q、质量为m的微粒,从x轴上的A点以初速度v与水平方向成角沿直线运动到y轴上的P点,A点到坐标原点O的距离为d.微粒进入y轴右侧后在竖直面内做匀速圆周运动,然后沿与P点运动速度相反的方向打到半径为r的的绝缘光滑圆管内壁的M点(假设微粒与M点碰后速度改变、电荷量不变,圆管内径的大小可忽略,电场和磁场可不受影响地穿透圆管),并恰好沿圆管内无碰撞下滑至N点.已知37°,sin 37°0.6,cos 37°0.8,求:(1)E1与E2大小之比;(2)y轴右侧的磁场的磁感应强度B2的大小和方向;(3)从A点运动到N点所用的时间.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论