高考数学解答题专题函数与导数_第1页
高考数学解答题专题函数与导数_第2页
高考数学解答题专题函数与导数_第3页
高考数学解答题专题函数与导数_第4页
高考数学解答题专题函数与导数_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高考数学解答题专题-函数与导数2.(辽宁卷22)(本小题满分14分)设函数()求f(x)的单调区间和极值;()是否存在实数a,使得关于x的不等式的解集为(0,+)?若存在,求a的取值范围;若不存在,试说明理由本小题主要考查函数的导数,单调性,极值,不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力满分14分解:()2分故当时,时,所以在单调递增,在单调递减4分由此知在的极大值为,没有极小值6分()()当时,由于,故关于的不等式的解集为10分()当时,由知,其中为正整数,且有12分又时,且取整数满足,且,则,即当时,关于的不等式的解集不是综合()()知,存在,使得关于的不等式的解集为

2、,且的取值范围为14分1.已知函数()求的极值;()若函数的图象与函数=1的图象在区间上有公共点,求实数a的取值范围。1解:(1)令当是增函数当是减函数(2)(i)当时,由()知上是增函数,在上是减函数又当时,所以的图象在上有公共点,等价于解得(ii)当时,上是增函数,所以原问题等价于又,无解2.已知函数, ()求函数的定义域;()求函数的单调区间;()当>0时,若存在x使得成立,求的取值范围.2解:()当时函数的定义域为; 当时函数的定义域为 ()令时,得即,当时,时,当时,故当 时,函数的递增区间为,递减区间为当时,所以,故当时,在上单调递增当时,若,;若,故当时,的单调递增区间为;

3、单调递减区间为 ()因为当时,函数的递增区间为;单调递减区间为若存在使得成立,只须,即 4.已知函数的图像关于原点成中心对称 ,设函数 (1)求的单调区间;(2)已知对任意恒成立求实数的取值范围(其中是自然对数的底数)4解: (1) 由已知可得c=0, , 令,得列表如下:(0,1)-+单调减单调减单调增所以的单调增区间为,单调减区间为和(2)在两边取对数,得而所以由(1)知当时,所以5.设函数,其中为常数()当时,判断函数在定义域上的单调性;()若函数的有极值点,求的取值范围及的极值点;()若,试利用(ii)求证:n3时,恒有。5解:(1)由题意知,的定义域为, 当时, ,函数在定义域上单调

4、递增 (2) 由()得,当时,,函数无极值点 当时,有两个不同解, 时,,此时 ,随在定义域上的变化情况如下表:减极小值增由此表可知:时,有惟一极小值点, ii) 当时,0<<1 此时,随的变化情况如下表:增极大值减极小值增由此表可知:时,有一个极大值和一个极小值点;综上所述:当时,有惟一最小值点;当时,有一个极大值点和一个极小值点(3)由(2)可知当时,函数,此时有惟一极小值点且 令函数 6.已知函数(1) 求在处的切线方程(2) 若的一个极值点到直线的距离为1,求的值;(3) 求方程的根的个数.6解:(1) 且故在点处的切线方程为: (2)由得,故仅有一个极小值点,根据题意得: 或 (3)令 当时, 当时, 因此,在时,单调递减, 在时,单调递增. 又为偶函数,当时,极小值为 当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论