



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、新课标人教版初中数学七年级下册第九章不等式与不等式组 精品复习教案第一节、知识梳理一、学习目标1.掌握不等式及其解(解集)的概念,理解不等式的意义.2.理解不等式的性质并会用不等式基本性质解简单的不等式.3.会用数轴表示出不等式的解集 .二、知识概要1. 不等式:一般地,用不等号“”、“”表示不等关系的式子叫做不等式.2. 不等式的解: 一般地, 在含有未知数的不等式中, 能使不等式成立的未知数的值,叫做不等式的解 .3. 不等式的解集:一个不等式的所有解,组成这个不等式的解的集合,称之为此不等式的解集 .4. 一元一次不等式:只含有一个未知数,且未知数的次数是1 的不等式,叫做一元一次不等式
2、 .5. 不等式的性质:性质一:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.性质二:不等式两边都乘以(或除以)同一个正数,不等号的方向不变.性质三:不等式的两边都乘以(或除以)同一个负数,不等号方向改变.6. 三角形中任意两边之差小于第三边.三、重点难点重点是不等式的基本性质及其应用,难点是不等式和不等式解集的理解.四、知识链接本周知识由以前学过的比较大小拓展而来,又为解决实际问题提供了一个解题的工具,并为以后学的不等式组打下基础.第二节、教材解读1. 常用的不等号有哪些?常用的不等号有五种,其读法和意义是:( 1)“”读作“不等于” ,它说明两个量是不相等的,但不能明
3、确哪个大哪个小.( 2)“”读作“大于” ,表示其左边的量比右边的量大.( 3)“”读作“小于” ,表示其左边的量比右边的量小.( 4)“”读作“大于或等于” ,即“不小于” ,表示左边的量不小于右边的量( 5)“”读作“小于或等于” ,即“不大于” ,表示左边的量不大于右边的量.2. 如何恰当地列不等式表示不等关系?( 1)找准题中不等关系的两个量,并用代数式表示.( 2)正确理解题目中的关键词语,如:多、少、快、慢、增加了、减少了、不足、不到、不大于、不小于、不超过、非负数、至多、至少等的确切含义.( 3)选用与题意符合的不等号将表示不等关系的两个量的代数式连接起来.根据下列关系列不等式:
4、a 的2 倍与b 的的和不大于3. 前者用代数式表示是2a+b. “不大于”就是“小于或等于”.列不等式为: 2a+b 3.3. 用数轴表示不等式注意什么?用数轴表示不等式要注意两点:一是边界;二是方向 . 若边界点在范围内则用实心点表示,若边界点不在范围内,则用空心圆圈表示;方向是对于边界点而言,大于向右画,而小于则向左画.在同一个数轴上表示下列两个不等式:x -3 ; x 2.第三节、错题剖析一 、去括号时,错用乘法分配律【例 1】 解不等式3x+2( 2-4x )<19.错解 :去括号,得3x+4-4x<19 ,解得 x>-15.诊断 :错解在去括号时,括号前面的数2
5、没有乘以括号内的每一项.正解 :去括号,得3x+4-8x<19 ,-5x<15 ,所以 x>-3.二、去括号时,忽视括号前的负号【例 2】 解不等式5x-3 ( 2x-1 )>-6.错解 :去括号,得5x-6x-3>-6,解得 x<3.诊断:去括号时,当括号前面是“- ”时,去掉括号和前面的“- ”,括号内的各项都要改变符号 . 错解在去括号时,没有将括号内的项全改变符号.正解 :去括号,得5x-6x+3>-6 ,所以 -x>-9 ,所以 x<9.三、移项时,不改变符号【例 3】 解不等式4x-5<2x-9.错解 :移项,得4x+2x
6、<-9-5,即 6x<-14 ,所以诊断 : 一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点 .正解 :移项,得4x-2x<-9+5 ,解得 2x<-4 ,所以 x<-2.四、去分母时,忽视分数线的括号作用【例 4】 解不等式错解 :去分母,得6x-2x-5>14,解得诊断 :去分母时,如果分子是一个整式,去掉分母后要用括号将分子括起来.错解在去掉分母时,忽视了分数线的括号作用.正解 :去分母,得6x- ( 2x-5 ) >14,去括号,得6x-2x+5>14 ,解得五、不等式两边同除以负数,不改变方向【例
7、5】解不等式3x 61+7x.错解:移项,得3x 7x 1+6,即 4x 7,所以诊断:将不等式 4x7 的系数化为1 时,不等式两边同除以4 后,根据不等式的基本性质: 不等式两边同乘以或同除以同一个负数, 不等号要改变方向, 因此造成了错解 .正解:移项,得3x 7x<1+6,即 4x 7,所以 x【例 6】 x 2 与 a 的和不是正数用不等式表示.错解及分析:2对“不是正数”理解不清.x2 与 a 的和是 0 或负数 .x +a<0.正解: x 2+a 0.【例 7】 求不等式的非负整数解 .错解及分析: 整理得, 3x 16,所以故其非负整数解是1,2, 3, 4, 5.
8、本例的解题过程没有错误,错在对“非负整数”的理解.正解:整理得,3x 16,所以故其非负整数解是0, 1, 2, 3, 4, 5.【例8】 解不等式3-5 (x-2 ) -4 ( -1+5x ) <0.错解及分析:去括号,得3-x-2-4+5x<0,即 4x<3,所以本题一是去括号后各项没有改变符号;二是一个数乘以一个多项式时应该把这个数和多项式的每一项相乘.正解:去括号得3-x+10+4-20x<0 ,即 -21x<-17 ,所以【例 9】 解不等式7x-6<4x-9.错解及分析:移项,得7x+4x<-9-6 ,即 11x<-15 ,所以一元一
9、次不等式中移项和一元一次方程中的移项一样,都要改变符号正解:移项,得7x-4x<-9+6 ,即 3x<-3 ,所以 x<-1.【例 10】 解不等式错解及分析:去分母,得3+2( 2-3x ) 5( 1+x) .即 11x 2,所以错误的原因是在去分母时漏乘了不含分母的一项“3”.正解:去分母,得30+2( 2-3x ) 5( 1+x) .即 11x 29,所以【例 11】 解不等式6x-6 1+7x.错解及分析:移项,得6x-7x 1+6.即 -x 7,所以 x<-7.将不等式 -x 7 的系数化为1 时,不等式两边同除以-1 ,不等号没有改变方向,因此造成了错解 .
10、正解:移项,得6x-7x<1+6.即 -x 7,所以 x -7.【例 12】 解关于 x 的不等式m( x-2 ) >x-2.错解 :化简,得( m-1) x>2( m-1),所以 x>2.诊断 :错解默认为m-1>0,实际上m-1 还可能小于或等于0.正解 :化简,得( m-1) x>2( m-1), 当 m-1>0 时, x>2; 当 m-1<0 时, x<2; 当 m-1=0 时,无解 .【例 13】 解不等式( a 1) x3.错解:系数化为1,得 x.诊断:此题的未知数系数含有字母,不能直接在不等式两边同时除以这个系数,应该
11、分类讨论 .正解: 当 a 1 0 时, x; 当 a 1 时, 0× x3,不等式无解; 当 a 10 时, x.【例 14】 不等式组的解集为.错解:两个不等式相加,得x-1 0,所以 x 1.诊断:这是解法上的错误,它把解不等式组与解一次方程组的方法混为一谈,不等式组的解法是分别求出不等式组中各个不等式的解集,然后在数轴上表示出来,求得的公共部分就是不等式组的解集,而不能用解方程组的方法来求解正解:解不等式组,得.在同一条数轴上表示出它们的解集,如图,所以不等式组的解集为:0 x【例 15】 解不等式组错解:因为 5x-3 4x+2,且所以 5x-3 3x-2.移项,得5x-3
12、x -2+3.4x+2 3x-2 ,解得x .任取一个诊断: 上面的解法套用了解方程组的方法,是否正确, 我们可以在xx 的值,看是否满足不等式组. 如取 x 1,将它代入5x-3 4x+2,得的条件下,2 6(不成立) . 可知 x 不是原方程组的解集,其造成错误的原因是由原不等式组变形为一个新的不等式时,改变了不等式的解集 .正解:由 5x-3 4x+2,得 x 5.由 4x+2 3x-2 ,得 x 4.综合 x 5 和 x 4,得原不等式组的解集为x 5.【例 16】解不等式组错解:由不等式2x 3<7 可得 x<2.由不等式5x-6>9 可得 x>3.所以原不等
13、式组的解集为2>x>3.诊断:由不等式性质可得,2>3,这是不可能的.正解:由不等式2x 3<7 可得 x<2.由不等式5x-6>9 可得 x>3.所以原不等式组无解.【例 17】 解不等式错解:去分母,得34x 1 9x. 移项,得 4x9x 13 合并,得 13x 2 系数化为 1,得诊断:本题忽视了分数线的双重作用 , 去分母时 , 若分子为多项式 , 应对其加上括号 . 正解: 去分母,得 3( 4x 1) 9x 去括号,得 3 4x+1 9x. 移项,得 4x 9x-1 3 合并,得 13x 4 系数化为1,得【例18】 若不等式组的解集为x>2,则a 的取值范围是().A. a<2B. a 2C.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025饮料分销代理合同
- 2025销售劳动合同模板
- 2025公司服装供货合同
- 2025维修合同 设备维修合同
- 2025办公室租赁合同附加协议
- 瓷砖销售类劳动合同协议
- 班干部任职合同协议
- 病人护理中介合同协议
- 电力作业人员合同协议
- 皮卡配件供货合同协议
- 非洲自然灾害
- 2023诗词大会知识竞赛200题题库(含答案)
- TL226 大众试验测试标准
- 2023借款协议书Word模板
- 生产设备拆除工程施工方案
- (完整版)年产30万吨合成氨合成工段工艺设计毕业论文
- 无障碍公共设施建设的问题及其对策研究
- 临床医学(专科)毕业综合考复习题
- 石家庄市存量房买卖合同
- 思想道德与法治2023版教学设计第六章 学习法治思想 提升法治素养
- 自来水厂调试方案
评论
0/150
提交评论