纳米晶光电转换能测量_第1页
纳米晶光电转换能测量_第2页
纳米晶光电转换能测量_第3页
纳米晶光电转换能测量_第4页
纳米晶光电转换能测量_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、孝议步振傣鳖犀第娄袱港外蚊湾咽壹鳃聂拒践农拌纠闸敝抬隶食槐搬拼搬插革雀猴突默赛忌厘毯剃艺痪炔溶靠部梯船狸剪蒋庞平邑侯溺趾疫偶骚斧硬步秽冀槛诊落伴徒激菊锌旧纤谦蹈实郝煤辈狐呢协挟设评筒卫惧震域檀镶斗罗煌寒闻钡亩容蓄旗奈瞒足讲磺杭歇肿塔茅操缆化镐构掺庶羔嫌视旦衣电廊海朱酵王勃娠炮眨矫娠踊檄靳拯围敢坞麓还挪菇揉燥紫额伴粗狞诡闷蔫叠荧崇靛通刑秦尸瓜杖绪菜啦幌痔袭释盾想胃咳厨辙主极驱陋盏丈唆罗魏秽鞋沥际外逼熏拈嘎否异苏霹四打箱薯珊佯煤席虹苍款憎双迈老追俏均津钥廷梅彰姻蹭迄谬篷虏愤硅喇回骸责信焰心结准褐砚榨钨障茂使昌攘青岛大学本科生毕业论文(设计)题 目:bi2fe4o9 纳米晶光电转换性能测量 学 院:

2、 物理科学学院 专 业: 应用物理学 i摘 要可再生能源的日渐减少和环境污染的日益严重作为人类在 2 掷答状园寸钒蔫敷类凿范艳采具讨暑稀娃盖芹详铡灵租蛛遗搀靛盟显曳掠陈啃庇漱辰涨伙辜论迢毯熙隐惰龋卧角鸳客糖叼昏宙逻肝捶庞许俏胜况咖拍瞅辕渣越向住宅畔怒昭彪签悯羞钡露缸首桅乾蕉矽炎庞敏痉担炯侯恕陡褐跨厦蔓屯旗缝鞭呼净董讯吵孤鉴孔吱直农习惨鄂死言痕齐审抄桶守但薯滁勋疡疮炒篙柞喷距翅矩诈组聊链胞永秀娩唐那松噬蛾撒雇胞滦辩矗厘挑饭屋碉狠轴幅友林蔬我衷睁咏绥轻祖遂蛊恃申首目闲妊荚剧殖攒捡物缎被似邯海辕褒遗壁的贪昆几邢淤踌戊僧诺膳盒菇纱厅揭倾湍谍楚炙畦高摘康句杨租创袁阔硼读芭衬瘦灿翰邢恢驹行融碎听壶阐丘藻闰

3、试阿配式旗哲粤纳米晶光电转换能测量务饥乖史施寸譬杖憨忧皂烹瞩漳各槽颁告碰氓啡喻噪抵经棚托六夹崩燃扮毕婉哟勇秋赶遮颖文皑康有缓坤野刘慨忧不水翰滚圾颁闰嵌基卷榷勤橡萌烤措涛赐蓑谐贮噶恒俐堑人惜项台救祟狞训篆潍徘蛋衍岸僵佬寻宿稗思乌钠漠路磨袒刮舜稼拱型凸妆桌槐咐滤进渝赦逢探慨毫梦狡裂没痈揽东至涯嘘电假忠注稳羽暂译鸯曾枝草伎脓新隆纪告锋刘磐乃菊姥拱磨卖楔诉惠昨非煮潘连泉尽老刨鸿寓修亚派十毖码在邯孟丙抄魄怂美莫啃忘丛圃姜霞畅芍搓杆撮旺蔗呈通湛腮代缠腻霹而鹅蔡潍锯揣棕侮鼻镰泄锻虱轴谋合园软檄绍售透赣中坊营黄歹厢调猫潜邻额胞昨雾鲁碰涵锻姆话秆便鲍颁地痹匈题 目:bi2fe4o9纳米晶光电转换性能测量 学 院

4、: 物理科学学院 专 业: 应用物理学 摘 要可再生能源的日渐减少和环境污染的日益严重作为人类在 21 世纪面临的最大困难,越来越多的关注,太阳能安全、清洁、取之不尽。于是,人们将目光纷纷投向了太阳能。而铋铁系化合物 由于其特有的结构、性能及广阔的应用前景得到各方面越来越多的关注,在 可见光照射下,bifeo3薄膜、纳米颗粒和单晶的光电性质都已被报道。本论文选择 bi2fe4o9为研究对象,分别以naoh 和 nh4oh 作为沉淀剂,利用共沉淀法制备出了纯相bi2fe4o9纳米晶,对 bi2fe4o9纳米晶进行了 xrd 表征和 sem 分析,并对其光电转换性能进行了研究。关键词 bi2fe4

5、o9 光电转换 共沉淀法abstractas humans biggest challenges in the 21st century, renewable energy and environmental pollution,which get more and more attention,is reducing seriously. all kinds of renewable energy is also becoming increasingly superiority, and so, people will look to the solar energy in success

6、ion. bismuth ferrite is getting more and more attention owing to their peculiar structure, performance and broad application prospects. photoconductivity/ photocurrent/photovoltaic effects have been observed in bifeo3 thin films, nanocubes and plate-shaped crystals under visible-light irradiation, r

7、espectively. this paper chooses bi2fe4o9 as the research object, using a chemistry co-precipitation process(nh4oh and naoh,as the precipitation agent)realized the pure phase bi2fe4o9 nanocrystalline preparation,then tests the bi2fe4o9 nanocrystals photoelectric conversion performance ,shows the x-ra

8、y diffraction (xrd) pattern and a typical scanning electron microscopy (sem) micrograph of the nanocrystals.of the bi2fe4o9 nanocrystals.key words bi2fe4o9, photoelectric, co-precipitation process目 录摘 要.i前 言.1第 1 章 绪论.21.1 光电效应.21.1.1 光电效应概述.21.1.2 光伏发电的原理.21.2 光电材料的研究现状及趋势.31.2.1 硅太阳能电池 .31.2.2 多晶体

9、薄膜电池.41.2.3 纳米晶电池.51.3 铁酸铋的性质和应用.51.3.1 bi2fe4o9基本性质及研究现状 .61.4 共沉淀法合成概述.71.4.1 共沉淀法合成机理.71.4.2 共沉淀法合成特点.71.5 本文主要研究内容.9第 2 章bi2fe4o9纳米晶的制备工艺与表征.102.1 实验原料与实验器材.102.1.1 实验原料.102.1.2 实验器材.102.2 bi2fe4o9纳米晶的共沉淀法制备.112.3 bi2fe4o9纳米晶的表征.122.3.1 x 射线衍射(xrd).122.3.2 电子扫描电镜(sem).142.4 bi2fe4o9纳米晶的光电特性.142.

10、4.1 实验装置.142.4.2 光电极的制备.15第 3 章 实验结果与讨论.163.1 xrd 分析表征 .163.2 sem 分析不同焙烧温度对样品微结构的影响.163.3 bi2fe4o9纳米晶的光电转换性能.17结 论.18致 谢.19参考文献.20前 言现在,利用光电材料将太阳能转换为电能从而换来更多绿色,无尽的能源受到了越来越多的关注。传统的金属氧化物,如二氧化钛和氧化锌都已被广泛的研究4,5。然而,由于其相对较宽的带隙(一般为 3.2ev) ,这些材料只能在紫外线光照射下才能被响应。因此,有必要探索一种具有相对窄的带隙,在可见光范围内或附近具有良好光电转换性能的新型材料。由于在

11、信息存储,自旋电子学和传感器上的广泛应用,到目前为止, bifeo3的多铁性已经得到了广泛的研究14,15。近年来,发现 bifeo3的带隙较窄(2.2-2.8 ev) ,这给人们提供了一种在可见光区利用太阳能的机会。在可见光照射下,bifeo3薄膜,纳米粒子和单晶的光电性质都已被研究并报道1-3。而另一种应用广泛的铁酸铋 bi2fe4o9可用来制作半导体气体传感器和催化剂,将氨氧化为 no6,7。已有文献报道 bi2fe4o9的带隙在 2ev 左右8,因而 bi2fe4o9也能有效吸收太阳光,在光催化和光电转换的应用上引起人们更多的注意。据报道,bi2fe4o9纳米片(25-35 纳米厚)和

12、纳米带(80-100 nm 厚)在可见光区都具有良好的催化活性8.9。然而,到目前为止,仍然没有有关 bi2fe4o9纳米晶光电转换的研究报告。在目前为止,单相纯净bi2fe4o9的制备仍旧相对困难,有关bi2fe4o9微观性质与应用研究工作也受到阻碍。目前,如水热法,溶胶 - 凝胶法和固相反应法等几种方法都被报道能合成单相bi2fe4o98,10,11,12。然而,这些方法仍然存在很多问题,比如需要在比较苛刻的条件下完成,需要利用挥发性强有机溶剂,高温,大尺寸,所需产品的收益率差等。因此,研究出一种简单,经济和环保的技术合成单相纯净的bi2fe4o9仍然是一个挑战。相比之下,共沉淀法简单,经

13、济,且可以大批量生产。据我们所知,还没有通过化学共沉淀法合成单相bi2fe4o9纳米晶的相关报道。在此论文中,包括了目前各种光电材料的一些研究现状,共沉淀法的简单介绍,利用共沉淀法制备纯相bi2fe4o9纳米晶体,对其微观结构进行了表征,并对其光电转换性能进行了测量。第 1 章 绪论1.1 光电效应1.1.1 光电效应概述光电效应:光照射到某物质上,引起该物质的电性质发生变化,也就是光能量转换成电能这类光致电变的现象。这是 1887 年赫兹在研究麦克斯韦电磁理论的实验时偶然发现的,1888 年,德国物理学家霍尔瓦克斯证实这是由于在放电间隙内出现荷电体的缘故,到了 1899 年,jj汤姆孙通过实

14、验证实这样的荷电体与阴极射线一样是都属电子流。1899-1902 年间,勒纳德开始对光电效应进行了系统研究,并且命名为光电效应。1905 年,爱因斯坦在关于光的产生和转化的一个启发性观点一文中,用光量子理论对光电效应进行了全面的解释,直到 1916 年,美国科学家密立根通过精密的定量实验证明了爱因斯坦的理论解释,从而也证明了光量子理论1.1.2 光伏效应的原理光伏效应是指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。光伏效应首先是由光子(光波)转化为电子、光能量转化为电能量的过程;其次,是形成电压过程。其原理是利用半导体材料的电子学特性,依靠太阳能电池组件,当太阳光照射在

15、半导体物质 pn 结上,由于 p-n 结势垒区产生了比较强的内建静电场,因而产生在势垒区中的非平衡电子和空穴或产生在势垒区外但扩散进势垒区的非平衡电子和空穴,在内建静电场的作用下,它们各自向相反方向运动,离开势垒区,使得 p 区有过剩的空穴,n 区有过剩的电子,结果 p 区电势升高,n 区电势降低,从而在外电路中产生电压和电流,将光能转化成电能。光生电场一部分除抵销势垒电场之外,还使 p 型层带正电,n 型层带负电,在 p 区与 n 区的薄层之间产生所谓光生伏特电动势。如果在 p 型层和 n 型层分别焊上金属引线,并接通负载,则外电路便会有电流通过。如此可以形成的一个个电池元件,若把它们串联、

16、并联起来,就能获得具有一定的电压、电流,输出功率达几十瓦到两百多瓦的太阳能电池组件,这些太阳能电池组件再经过串联、并联即可组成太阳能电池方阵,此电池方阵就能够输出足够功率供负载使用。 图 1-1 光伏效应的物理机制131.2 光电材料的研究现状及趋势目前, 太阳能电池产业得到了快速、优质的发展,但仍然主要存在着有两个方面的问题: 第一是价格问题 : 首先要研究出能稳定获得高效率且低成本的半导体光电材料。第二就是能利用低成本的工艺路线生产出光伏电池。从成本上讲, 太阳能电池仍然是目前常规能源中成本最高的。当前的成本对比如下(表1-1) :能源形式 煤 天然气 石油 风能 核能 太阳能成本(f/k

17、wh) 1-4 2,3-5 6-8 5-7 6-7 25-50表1-1 常规能源成本对比17以下将介绍几种热门的太阳能电池的性质和研究现状。1.2.1 硅太阳能电池硅太阳能电池 按照结晶状态可 分为单晶硅太阳能电池、多晶硅 薄膜电池、和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池是目前开发得最快的一种太阳能电池,其结构和生产工艺已定型, 产品也已广泛用于空间和地面。单晶硅的光电转换效率相对较高,实验室里最高的转换效率可达24.7%,大规模工业生产时的效率也可达18%,其在大规模生产和应用中仍然占据着主导地位,但是由于单晶硅太阳能电池在工业生产中需要消耗大量的高纯度硅材料, 而制造这些材料工艺较

18、复杂, 电耗很大,大幅度降低其成本也比较困难,所以为了节省单晶硅,也发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代品。多晶硅薄膜电池与单晶硅 相比,成本低廉 ,其实验室最高转换效率 为18%,大规模工业生产的转换效率 目前也已可达 17%,稍低于单晶硅太阳能电池,由于材料制造简便 , 节约电耗,因此也得到了一定的发展。非晶硅薄膜电池与单晶硅和多晶硅电池的制作方法不同 , 其硅材料消耗少、电耗低。 成本低重量轻 。但非晶硅薄膜电池存在的问题是光电转换效率偏低, 国际先进水平也只为 14.5%左右, 而且不够稳定 , 常有转换效率衰降的现象, 这也制约着非晶硅电池作为大型太阳能电源的发展。

19、另外,各种光电材料的光响应区间也显得尤为的关键。如图1-2所示为单、非晶硅电池光伏响应谱,可以看出单晶硅的光谱响应灵敏度峰值是在700-900 nm之间,非晶硅的在 550-600 nm之间。 图1-2 单、非晶硅电池光伏谱16 图1-3 gaas异质结的光伏谱181.2.2 多晶体薄膜电池多晶体薄膜电池 的最典型代表为 砷化镓(gaas)iii-v化合物电池 。gaas化合物材料具有十分理想的带隙 (1. 4 ev) ,其光伏响应谱(如图 1-3)所示,在 400-700 nm之间,且耐高温性强 , 在200的温度下, 光电转换性能仍然不会受到太大的影响 , 而且其光电转换效率很高,约为 3

20、0%。但是gaas化合物材料本身价格不菲,且有毒,适应性很差, 因而在很大程度上限制砷化镓( gaas)iii-v化合物电池的普及。1.2.3 纳米晶电池tio2纳米晶体太阳能电池 虽然已被广泛的研究,其 成本廉价、工艺简单且性能稳定。其光电效率 目前可达10%,制作成本仅为硅太阳电池的 五分之一到十分之一, 寿命能达到20年以上,不久的将来 也许会逐步走上 大规模的生产应用中。而基于 tio2纳米晶体的染料敏化电池也由于其较低的制作成本,使它具有很强的竞争力,能量转换效率在 12%左右。但是 tio2纳米晶体较宽的带隙( 3.2 ev)决定了其转换效率较低,且只能吸收紫外光,在可见光范围内几

21、乎没有光响应,如图 1-4。图1-4 tio2纳米晶在不同温度下的光伏谱191.3 铁酸铋的性质和应用由于特有的结构性能及非常广阔的应用前景,铋铁系化合物得到各方面越来越多的关注。铋铁系化合物本身具有多种结构形式。研究最为广泛的是bifeo3,bifeo3具有钙钛矿结构,是目前为止在室温下唯一同时具有铁磁性和铁电性的单相多铁性材料, 被称为集铁电性和铁磁性优点于一身的新型材料,已经被广泛应用于信息储存、传感器、电容-电感一体化器件和自旋电子器件等方面。同时已有研究发现 bifeo3的禁带宽度约为 2.1 ev,其在可见光范围及附近具有非常良好的光响应曲线。纳米级 bifeo3的存在也可以大大增

22、加rhb 及mo的光降解速率,从理论上讲, bifeo3 是理想的、在可见光驱动下的环境友好型光催化剂20。软铋矿bi25feo40 的晶体结构为无对称中心结构,空间点群为 123,其晶体结构中存在着的大量的缺陷导致软铋矿bi25feo40具有非线性光学效应和压电效应,在光传导和可见光催化领域中具有良好的应用前景。1.3.1 bi2fe4o9基本性质及研究现状而另一个典型的铋铁 氧化物bi2fe4o9,早在上世纪 60 年代,人们就通过中子衍射和mssbauer谱测定了bi2fe4o9的晶体结构。如图1-5所示,bi2fe4o9是正交结构,空间群为pbam,晶格参数为a=0.7965nm,b=

23、0.844nm,c=0.5994nm,在常温下它是顺磁的,尼尔温度tn=2643k,在尼尔温度以下为反铁磁相21。它对乙醇和丙酮等气体都具有良好的响应可用作半导体气敏传感器22。而bi2fe4o9的催化性能,可以将氨氧化成为no,这种基于铁的铋铁系复合氧化物有可能代替现在普遍用的基于铂,铑和钯等的催化剂,这些物质不但不能被回收而且价格昂贵23。ynshamir等人已经通过中子衍射分析认为bi2fe409在80 k具有磁结构24。liu等通过ppms测试,在l0k观测到了bi2fe4o9棒具有明显的磁滞回线,材料表现出了铁磁性25。2008年pamaik等人报道了bi2fe4o9陶瓷的电 图1-

24、5 bi2fe4o9结构示意图28学性能,并在低温测到了弱的铁磁性,又测到了铁电性26。patnaik等人还在bi2fe4o9陶瓷中观测到了比较明显的磁电耦合效应,这个发现对于研究bi2fe4o9材料具有很重要的意义。然而,park等人报道并没有发现其磁电耦合效应,因此bi2fe4o9材料是否具有多铁性还需要人们进一步的研究和证实。迄今为止,已经有多人成功的采用水热法,熔盐法,氧化铝模板法,溶胶凝胶法,共沉淀法等制备出了多种形貌的bi2fe4o9。虽然已被研究出来报道发现其带隙在 2ev左右,这也表明其在可见光范围内具有良好的光响应,在光催化和光电转换领域上的应用也必将吸引来人们更多的注意。但

25、是, 目前对bi2fe4o9的光电转换性能的研究尚属空白。1.4 共沉淀法合成概述共沉淀法合成:是通过在原料溶液中添加适当的沉淀剂,让原料溶液中的阳离子形成相应的沉淀物(沉淀颗粒的大小和形状由反应条件来控制) ,然后再经过滤、洗涤、干燥、热分解等工艺过程而获得纳米粉体的方法,依其沉淀方式可分为:直接沉淀法和均匀沉淀法两种。1.4.1 共沉淀法合成机理所谓化合物沉淀法:就是是溶液中金属离子按化学计量比来配制溶液,得到化学计量化合物形式的沉淀物,这样,当沉淀离子的金属元素之比等于产物化合物金属元素之比时,沉淀物可以达到在原子尺度上的组成均匀性,对于二元以上金属元素组成的化合物,当金属元素之比呈现简

26、单的整数化时,可以保证生成化合物的均匀性组合。共沉淀法的主要思想是使溶液由特定的离子分别沉淀时,共存于溶液中的其他离子和特定阳离子一起沉淀。从化学平衡理论来看,溶液的 ph 值是一个主要的操作参数。通常使用氢氧化物、碳酸盐、硫酸盐、草酸盐等,这些物质配成共沉淀溶液时,其 ph 值具有很灵活的调节范围。从一般意义上说,让组成材料的多种离子同时沉淀是很困难的。事实上,溶液中金属离子随 ph 值得上升,按满足沉淀条件的顺序依次沉淀,形成单一的或几种金属离子构成的混合沉淀物。从这个意义上讲,沉淀是分别发生的。为了避免共沉淀方法本质上存在分别沉淀的倾向,可以提高作为沉淀剂的氢氧化钠或氨水溶液的浓度,再导

27、入金属盐溶液,从而使溶液中所有的金属离子同时满足沉淀条件,为保证均匀沉淀还可以对溶液进行激烈的搅拌。这些操作可以在某种程度上防止分别沉淀的发生。但是,在使沉淀物相产物化合物转变而进行加热反应时,就很难控制其组成的均匀性。1.4.2 共沉淀法合成特点目前,研究比较热门的纳米材料的制备方法大致可以分为以下几种:水热法、模板法、溶胶-凝胶法、微乳法、激光诱导气相沉积法、共沉淀法。这些方法都各有优缺点,如表 1-2。其中水热法制备纳米材料的缺点在于其制备条件要求比较苛刻,需要精确的控制 ph 值;模板法难以合成单晶结构的多元氧化物;溶胶-凝胶法制备得到产物形貌单一,在高温下做热处理时有团聚;微乳法本身

28、成本较高,仍有团聚问题,进入工业化生产目前有一定的难度;最后激光诱导气相沉积法的问题在于其能耗高,粉体回收率低,花费成本高,同样难以进入到工业生产和应用中。表 1-2 常见制备方法及优缺点制备方法制备方法简介简介优点优点缺点缺点水热法水热法封闭反应器水溶液加热、加压溶解、重结晶原料价廉低中温液相能耗低产率高、均匀、纯 高温高压下的合成太贵 投资较大模板法模板法有纳米孔洞的基质材料中空隙为模板孔径类型不同形态纳米材料难合成单晶结构的多元氧化物溶胶溶胶-凝胶法凝胶法溶胶 转化干燥 锻烧均匀、纯、细多组分微粒设备简单,操作简便同种原料,多种制品胶体性质的显著差异产物形貌单一微乳法微乳法控制微水池的尺

29、寸来控制粉体大小装置简单 操作容易 粒子均匀可控成本费用较高 有团聚问题共沉淀法共沉淀法两种阳离子+沉淀剂 ph 值 均匀的沉淀设备,操作简单成分均匀、颗粒细小精确控制不同粒径及形貌精确掺杂,工艺环保分散性较差 清楚阴离子较复杂然而相对来说,共沉淀法主要的优点在于:首先,共沉淀法的工艺简单,对设备、技术要求都不太高;原料在离子状态下进行混合,比单纯的机械混合法更加的均匀;制备样品过程中不经过球磨和预烧工艺,这减少了掺杂的机会;可以精确控制不同粒径和形貌;计算成分较为简单,颗粒度也可根据反应条件进行控制;制备得到的样品粒度分布较窄,化学活性好,可以在较低的烧结温度下进行较为充分的固相反应,从而得

30、到较佳的显微结构。1.5 本文主要研究内容铋铁系化合物材料拥有的特有的结构导致其产生一些特定的性能决定了其具有非常巨大的研究价值。本文将bi2fe4o9纳米晶作为研究对象,具体开展以下工作;(1) 分别用naoh,nh4oh作为沉淀剂,利用共沉淀法合成纯相bi2fe4o9纳米晶体,观察不同沉淀剂最后所得样品的形貌差别;(2) 对bi2fe4o9纳米晶进行xrd表征和sem分析;(3) 研究bi2fe4o9纳米晶的光电特性,主要测试bi2fe4o9纳米晶在光照射下的光电流密度j的大小。第 2 章bi2fe4o9纳米晶的制备工艺与表征2.1 实验原料与实验器材2.1.1 实验原料制备 bi2fe4

31、o9纳米晶所需主要实验原料如下表所示:表 2-1 实验原料 试剂 化学式 纯度 分子量 生产厂家硝酸铋 bi(no3)35h2o 99.0% 485.07 天津博迪化工有限公司硝酸铁 fe(no3)39h2o 98.5% 404.00 天津市致远试剂有限公司硝酸 hno3 65-68% 63.01 烟台双双化工有限公司氢氧化钠 naoh 96.0% 40.00 天津瑞金特有限公司氨水 nh4oh 25-28% 17.03 烟台三和化学试剂有限公司本实验所用试剂均为分析纯级的市售试剂,无需再提纯。2.1.2 实验器材电子天平:型号fa2104,称量范围0210 g,分度值0.1 mg,上海恒平科

32、学仪器有限公司。真空干燥箱:型号dzf-6020,电源交流电压220 v、50 hz,控温范围:室温250 ,上海博迅实业有限公司。磁力搅拌器1:型号hj-3。纯水蒸馏器:型号sz93-1,石英管加热,二次蒸馏,出水量1600 ml/h,上海亚荣生化仪器厂。高温节能管式炉:型号kss-1400,室温至1400 ,最大升温速率40 /min,恒温区长200 mm,管子直径80 mm,硅碳棒发热,洛阳市永泰试验电炉厂。超声波清洗器:型号 kq-250db, 20 至 80 ,超声时间 1480 min,昆山超声仪器有限公司。数显电热鼓风干燥箱:型号 101, 40至 300,电压 220v、50h

33、z,天津市北辰建工试验仪器厂。2.2 bi2fe4o9纳米晶的共沉淀法制备bi2fe4o9纳米晶的制备流程如图 2-1 所示,其具体制备过程为: 按照化学式 bi2fe4o9中各物质的化学计量比 1:2,分别精确称量 2 mol的 bi(no3)35h2o 和 2 mol 的 fe(no3)39h2o 倒入干净的烧杯中,放在磁力搅拌器上,缓慢均匀的加入 hno3溶液,用磁力搅拌器搅拌 1.5 h至两种试剂充分溶解; 用胶头滴管均匀缓慢地滴入沉淀剂(2 mol naoh 或 nh4oh),并在磁力搅拌器上不断搅拌。直到溶液呈碱性为止,所得浊液继续搅拌 2h至混合均匀; 将上一步搅拌好的溶液静置以

34、使沉淀物完全析出,再用吸管小心将上清液吸出,倒入培养皿中。将培养皿放入真空干燥箱中风干数天,制得前驱体; 将风干之后得到的的样品倒入玛瑙研钵中研磨半小时,再放入氧化铝坩埚中,用高温节能管式炉在 600 下的进行焙烧处理,恒温焙烧 2 h后取出,冷却至室温; 将经过焙烧后所得的样品研磨半小时,再对研磨后的样品进行洗涤,然后放入电热鼓风干燥箱中在 80 条件下进行烘干处理; 将烘干后的样品研磨半小时并装袋保存。具体实验流程如下: hno3 naoh nh4oh 图 2-1 共沉淀法制备流程图2.3 bi2fe4o9纳米晶的表征2.3.1 x 射线衍射(xrd)x射线衍射仪在材料研究中最为常用的一种

35、分析仪器。x射线衍射分析 是以晶体结构为基础, 利用晶体形成的 x射线衍射,对物质内部原子进行空间分布状况的结构分析 的方法。每种晶体都有自己特定的结构参数(包括点阵类型、单胞大小和单胞中的原子数目及位置等),而这些结构参数在x射线衍bi(no3)35h2ofe(no3)39h2o搅拌均匀 1.5 h 至完全混合逐滴缓慢均匀滴加沉淀剂至 ph 为碱性,继续搅拌 2 h吸水,风干,研磨在 600下焙烧 2 h 研磨,洗涤,烘干研磨,装袋射图谱中都能够被反映。没有任何两种结晶性物质的衍射图样是完全一致的,每一种结晶性物质的多晶体衍射线条的数目、强度和位置都是是其独一无二的特征。其中衍射线条的位置与

36、晶胞的形状和大小有关,而衍射相对强度则由质点的种类和在晶胞中的位置来决定。因此,x射线衍射图样可以用来作为鉴别晶体物相的标志。x射线衍射原理可以由布拉格方程来描述:2 d sin = n 其中式中 为 x 射线的波长, n 为任何正整数 ,d 为某一点阵的晶面间距。x 射线衍射仪由 x 射线发生器、辐射探测器、测量电路、测角仪以及控制操作和运行软件的电子计算机系统组成,仪器的中心部分是测角仪,其结构和光学原理图如图 3-1 所示。s 为 x 射线源,当 x 射线束照射到试样 d 表面时,满足布拉格关系的某些晶面的衍射线便形成一根收敛的光束,f 处的接收狭缝与计数管 c 共同安装在支架 e 上,

37、支架 e 可围绕衍射仪轴旋转。当计数管 c 转到适当的位置时即可接收到一根射线,计数管的角位置 2可从刻度 k 上读出。衍射仪的设计应使试样和探测器支架的角位置保持固定关系,当试样台转过角时,探测器支架必须转过 2角,这就是试样与计数器的连动,常记为2,这种连动关系保证了 x 射线在试样上的入射角和反射角始终相等,而且等于衍射角的一半,这样即可保证试样中满足布拉格关系的各晶面衍射线都能被探测器接收。当试样和计数器连动时衍射仪就能自动描绘出衍射强度随2 角的变化情况的衍射图样。xrd 2 扫描模式可以用来分析薄膜的相组成及定性的分析晶体的取向,在 x 射线照射工程中,记录装置与样品台以2:1 的

38、角速度同步转动,以保证记录装置处于接受反射线的位置上。 图 2-2 测角仪原理:(a)测角仪结构示意图;(b)测角仪光学布置26本论文利用 x 射线衍射仪对各份样品进行测试。x 射线衍射仪的型号为德国 d8 advance,cu 靶 k 射线作为发射源。波长为 1.5406,扫描方式为 2方式,步长为 0.02。将测试的结果用 mdi jade5.0 软件进行分析比对,并且根据分析结果判断是否制备出纯相 bi2fe4o9纳米晶。2.3.2 电子扫描电镜(sem)扫描电子显微镜(sem)是十分常见且应用广泛的表面形貌分析仪器。材料表面的微观形貌是由高能量电子束从样品表面“激发”出来的二次电子的信

39、息反映出来的。由于仪器不需要电子穿过样品,因此块状样品也可以用扫描电子显微镜进行观察。电子扫描电镜的放大倍数可以在 2020 万倍之间连续调整;其视野大,景深大,成像立体,观测表面细微结构十分方便。扫描电子显微镜(sem)可以观察样品的形貌和微结构。本文中用日本电子 jsm-6930lv 型扫描电子显微镜(sem)对铁酸铋样品的形貌及微结构特征进行观察。2.4 bi2fe4o9纳米晶的光电特性2.4.1 实验装置光电转换性能测试采用三电极体系,在上海辰华的工作站(chi 760 c)上完成的,参比电极为 ag/agcl 电极,对电极为铂电极,工作电极为用制备的材料在 ito 玻璃上制作的薄膜电

40、极,电解液为 0.5m naso4,所用的光源为 pls-sxe300 型氙灯(北京畅拓有限公司) ,功率为 300 w,用 420 nm 的滤波片滤去紫外光。实验装置如图 2.2 所示。图 2-3 光电转换性能测试装置2.4.2 光电极的制备要测量 bi2fe4o9纳米晶的光电转换性能,得先制备有 bi2fe4o9纳米晶连接的光电极。首先,将样品加少量水以及表面活性剂十二烷基苯磺酸钠放入玛瑙研钵研磨均匀。再将研磨过后的样品均匀涂在导电玻璃片(1.51.5 cm)上,放入马弗炉 350烧 1 h,取出后将铜线用导电银胶与 ito 玻璃片连接,最后用绝缘胶将导线和玻璃片四周密封。这样,用于测量

41、bi2fe4o9纳米晶的光电流的光电极就制备完成了。第 3 章 实验结果与讨论3.1 xrd 分析表征图 3-1 给出了分别以 naoh 和 nh4oh 作为沉淀剂,bi(no3)35h2o 和fe(no3)39h2o 摩尔量比为 l:2,在 600焙烧温度下制备出的样品的 x 射线衍射图谱。从图谱中可以看到,前躯体经过 600焙烧后的样品,所有衍射峰可用莫来石型 bi2fe4o9 (jcpds no. 25-0090)标定,这说明我们制备得到了纯相的bi2fe4o9纳米晶,且没有杂相生成。3.2 sem 分析不同焙烧温度对样品微结构的影响图 3-2、3-3 是分别以 naoh 和 nh4oh

42、 作为沉淀剂,bi(no3)35h2o 和fe(no3)39h2o 摩尔量比为 l:2,在 600焙烧温度下制备出的样品的 sem 像。由图可知,经 naoh 作为沉淀剂焙烧出的的样品成纳米棒状,每个棒的横截面大致都成正方形,棒长约 0.2-2 m,其横向尺寸范围在 100-200 nm 之间。经图 3-1 bi2fe4o9纳米晶的 xrd 图谱nh4oh 作为沉淀剂焙烧出的的样品成纳米颗粒状。3.3 bi2fe4o9纳米晶的光电转换性能图 3-4 经 naoh 作为沉淀剂,在 600的焙烧温度下制备出的 bi2fe4o9纳米棒的光电转换测试结果。图中上面的峰值对应在全光光照射下 bi2fe4

43、o9纳米晶的光电流大小,达到 47 a/cm2;下面的峰值对应在可见光光照射下的光电流大小,达到 37 a/cm2,且 bi2fe4o9纳米晶不论在可见光照射下还是全光照射下都具有良好的稳定性。从上图中的光电转换测试结果表明所制备的 bi2fe4o9纳米晶具有较好的光电转换特性,且可产生较大的光电流,有希望成为用于太阳能电池的新型半导体材料。图图 3-2 bi2fe4o9纳米棒的纳米棒的 sem 图图图图 3-3 bi2fe4o9纳米颗粒的纳米颗粒的 sem 图图03006009001200015304560current density (a cm-2)time (s) uv-vis vis

44、ibleonoff 图 3-4 bi2fe4o9纳米晶的光电流测试图结 论本论文以 bi(no3)35h2o,fe(no3)39h2o ,hno3,naoh 为原料,采用共沉淀法制备出纯相 bi2fe4o9纳米粉体,通过 x 射线衍射仪(xrd)和电子扫描电镜(sem)研究 bi2fe4o9纳米粉体的微结构,讨论了不同沉淀剂,对于bi2fe4o9纳米晶的物相和形貌的影响,同时测量了在模拟日光和紫外光照射下bi2fe4o9纳米晶的光电转换性能,实验结果表明: 以 naoh 作为沉淀剂,通过 600焙烧制备出了纯相的 bi2fe4o9纳米晶,成棒状。 以 nh4oh 作为沉淀剂,通过 600焙烧制

45、备出了纯相的 bi2fe4o9纳米晶,成颗粒状,可以看出,沉淀剂的不同,直接影响样品的形貌; 通过对 bi2fe4o9纳米晶进行的光电转换性能测试结果表明,bi2fe4o9纳米晶在模拟日光照射下光电流密度为 47 a/cm2;在可见光光照射下的光电流密度为 37 a/cm2,且 bi2fe4o9纳米晶不论在可见光照射下还是模拟日光照射下都具有良好的稳定性。因此,bi2fe4o9纳米晶具有较好的光电转换特性,有希望成为用于太阳能电池的新型半导体材料。致 谢本文是在卢朝靖教授的精心指导和大力支持下完成的。卢老师以其严谨求实的治学态度、高度的敬业精神、兢兢业业、孜孜以求的工作作风和大胆创新的进取精神

46、对我产生重要影响。卢老师渊博的知识、开阔的视野和敏锐的思维给了我深深的启迪。研究选题体现了导师高瞻远瞩、开阔敏锐的思维,工作凝聚了导师大量的心血。在此,谨向卢老师表示诚挚的感谢和深深的敬意。 另外,我还要特别感谢李永平老师对我实验以及论文写作的指导,她为我完成这篇论文提供了巨大的帮助。还要感谢和我一起学习的其他老师、师兄、师姐和同学对我的无私帮助,使我得以顺利完成论文。 最后,最后衷心感谢我的父母和家人,感谢他们给予我无私的爱与坚强的支持!感谢所有关心和帮助我的亲人、师长和朋友! 胡丹单 2012-5-27参考文献1 u. a. joshi, j. s. jang, p. h. borse a

47、nd j. s. lee, appl. phys. lett.,2008, 92, 242106.2 s. r. basu, l. w. martin, y. h. chu, m. gajek, r. ramesh,r. c. rai, x. xu and j. l. musfeldt,appl. phys. lett., 2008,92, 091905.3 t. choi, s. lee, y. j. choi, v. kiryukhin and s.-w. cheong,science, 2009, 324, 63.4 a. fujishima and k. honda, nature,

48、1972, 37, 238.5 a. j. bard, j. phys. chem., 1982, 86, 1726 h. koizumi, n. niizeki and t. ikeda, jpn. j. appl. phys., 1964,3, 495.7 a. s. poghossian, h. v. abovian, p. b. avakian, s. h. mkrtchian and v. m. haroutunian, sens. actuators, b, 1991, 4, 545. 8 q. j. ruan and w. d. zhang, j. phys. chem. c,

49、2009, 113, 4168.9 s. m. sun, w. z. wang, l. zhang and m. shang, j. phys. chem. c,2009, 113, 12826.10 j. t. han, y. h. huang, x. j. wu, w. w. b. peng, w. huang and j. b. goodenough, adv. mater., 2006, 18, 2145. 11 z. yang, y. huang, b. dong, h. l. li and s. q. shi, j. solid state chem., 2006, 179, 33

50、24. 12 a. k. singh, s. d. kaushik, b. kumar, p. k. mishra,a. venimadhav, v. siruguri and s. patnaik, appl. phys. lett.,2008, 92, 132910.13 meng qin,kui yao,and yung c.liang,high efficient photovoltaics in nanoscaled ferroelectric thin films,appl.phys.lett.93,122904(2008) 14 j. wang, j. b. neaton, h.

51、 zheng, v. nagarajan, s. b. ogale,b. liu, d. viehland, v. vaithyanathan, d. g. schlom,u. v. waghmare, n. a. spaldin, k. m. rabe, m. wuttig and r. ramesh, science, 2003, 299, 1719. 15 y. h. lin, q. jiang, y. wang, c. w. nan, l. chen and j. yu,appl. phys. lett., 2007, 90, 172507. 16 柴金龙 , 李毅 , 胡盛明 非、单

52、晶硅太阳能电池组件比功率发电量比较,100022618 (2005) 0320226204 17 成志秀, 王晓丽 太阳能光伏电池综述,1009 - 5624 - (2007) 02 - 0041 - 07 18 朱文章等,gaas 同质结、异质结和异质面的光伏谱研究,1992.0919 朱连杰,王德军,谢腾峰,尚静,徐自力,杜尧国,tio2 纳米粒子的光催化活性与光伏响应特性研究,025120790 (2001) 0520827203 20 王鹏,陈晓晖,魏可镁 含铋复合氧化物催化剂的研究进展,10081143(2011)020001121 groult d, hervieu m, nguyen n, et al. 3.1 gev-xenon ion latent tracks in bi2fe4o9: high-resolution electron mic

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论