版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-11-61作业作业p43 习题习题 2.3 10. 12(3)(4)(7)(10).p49 习题习题 2.4 9(1)(4)(6). 练习练习p43 习题习题 2.3 4. 5. 8.p49 习题习题 2.4 1. 2. 5.2021-11-62第三讲第三讲 ( (一一) ) 无穷小量无穷小量( (续续) ) ( (二二) )连续函数连续函数一、三个重要关系一、三个重要关系二、二、无穷小量的比较无穷小量的比较三、三、求极限举例求极限举例 四、四、函数连续性的定义函数连续性的定义2021-11-631.(无穷小与无穷大)(无穷小与无穷大).)(1,)(,是是无无穷穷小小则则在在这这个个
2、变变化化过过程程中中是是无无穷穷大大化化过过程程中中若若在在自自变变量量的的某某一一个个变变xfxf.)(),()()(lim时时的的无无穷穷小小是是当当其其中中 xxxaxfaxfx 2.(极限与无穷小)(极限与无穷小)一、三个重要关系一、三个重要关系2021-11-643.无穷大与无界函数无穷大与无界函数无无界界。反反之之不不一一定定。则则是是无无穷穷大大化化过过程程中中若若在在自自变变量量的的某某一一个个变变)(,)(,xfxf问题:问题:两个无穷小量的商是否为无穷小量?两个无穷小量的商是否为无穷小量? xxxxf,sin)(例例2021-11-65二、无穷小量的比较二、无穷小量的比较.
3、)()(,1)()(lim,;)()(, 0)()(lim)1(.)()(,是是等等价价无无穷穷小小与与时时称称当当时时当当特特别别是是同同阶阶无无穷穷小小与与时时则则称称当当若若都都是是无无穷穷小小与与过过程程中中设设在在自自变变量量的的同同一一变变化化xgxfxxgxfxgxfxaxgxfxgxfxx 定义:定义:)()()(xxgxf记记作作2021-11-66).()()(.)()(, 0)()(lim)2( xxgxfxgxfxxgxfx记记作作相相比比是是高高阶阶无无穷穷小小与与时时则则称称当当若若.)()(, 0)()(lim)3(阶阶无无穷穷小小相相比比是是与与时时则则称称当当
4、若若kxgxfxaxgxfkax 2021-11-67).()()()()(,)(, 0)2(00*xxxgoxfmxgxfxnxm 则则记记成成有有时时使使当当若若)()(,)()(lim0 xgoxfaxgxfxx 则则有有若若)()(, 0)()(lim)1(0 xgxfxgxfxx 则则记记若若”“”与与“符符号号o2021-11-68几个常用的等价无穷小量)0(xxxxxaxaxexxxxxxxxxx2111)1ln(ln11arctanarcsintansin 2021-11-69等价无穷小量的性质)(,sin,1)(sinsin,0 xxxxxxxxxx误误差差是是时时当当时时当
5、当例例 )()()()()()()()(,)(),(,xgxgxfxfxgxfxgxfxgxfx 或或则则无无穷穷小小均均为为时时设设当当性质性质1:2021-11-610)()(lim)()(lim)()(lim)()(lim1111xgxgxgxfxfxfxgxfxxxx 存存在在,且且有有均均为为无无穷穷小小时时若若当当)()(lim),()(),()(,)(),(),(),(,111111xgxfxgxgxfxfxgxfxgxfxx性质性质2:)()(lim)()(lim11xgxfxgxfxx 则则有有等价代换等价代换)()(lim)()(lim1100 xgxfxgxfxx 202
6、1-11-611解解54)12()2(lim)2)(12()2)(2(lim2324lim22222 xxxxxxxxxxxx)232(54)4( ;)232()4( ,22222 xxxxxxx同同阶阶无无穷穷小小是是与与时时当当?2324lim222 xxxx例例1三、求极限举例三、求极限举例2021-11-612?cos1lim20 xxx2222022220)()(sinlim214)()(sin2limxxxxxx 222020sin2limcos1limxxxxxx 21sinlimsinlim21220220 xxxxxx例例2解解2021-11-613)()(cos12同阶xo
7、x )()(cos1高阶xx )(21cos12等价xx 阶无穷小量的是2cos1xx 21cos1lim20 xxx1cos1lim2210 xxx2021-11-614xxxx30sinsintanlim 21lim22210 xxx?sinsintanlim30 xxxx例例3解解xxx20sincos1lim xxxxcos1sincos1lim20 2021-11-615)(sintan3xoxx 2sintan3xxx )(sintan2xxx 是是 x 的的 3 阶无穷小阶无穷小0limsinsintanlim3030 xxxxxxxxxxxxxsin,tan,0时时当当 讨论:
8、讨论:代数和不能代换!代数和不能代换!2021-11-616?)1ln(lim0 xxx解解xxxxxx100)1ln(lim)1ln(lim 1lnlim)1(lim10 uexeuxx因因为为1)1ln(lim0 xxx所所以以例例42021-11-617?1lim0 xaxxxexaaxxxx1lim1limln00 axaxxlnlnlim0 ) 0(ln1 xaxax)0(1( xxex因因为为解解例例52021-11-618?tan3)sin23(lim20 xxxxx解解例例6xxxxx20tan3)sin23(lim 23201)sin1(3limxxxxx 2)sin1ln(
9、01lim32xexxx 2320)sin1ln(limxxxx 32sinlim320 xxx2021-11-619?)sin(cos21lim33 xxx,3ux 作作变变换换ux 3 则则0,3,ux时时当当并并且且 解解 )3cos(21cos21ux 又又例例7)sin3sincos3(cos21uu uusin3cos1 2021-11-6203sincos1limsinsin3cos1lim)3sin(cos21lim003 uuuuuxxuux 从而32cos2sin22sin2lim20 uuuu332cos1lim2sinlim00 uuuu3lim2210 uuu3 或者
10、2021-11-621连连 续续 函函 数数2021-11-622函数连续性的定义函数连续性的定义 函数的连续性描述函数的渐变性态函数的连续性描述函数的渐变性态, ,在通常意义下,对函数连续性有三种在通常意义下,对函数连续性有三种描述:描述: 当自变量有微小变化时,因变量的当自变量有微小变化时,因变量的 变化也是微小的;变化也是微小的; 自变量的微小变化不会引起因变量的自变量的微小变化不会引起因变量的 跳变;跳变; 连续函数的图形可以一笔画成连续函数的图形可以一笔画成, ,不断开不断开. .2021-11-6232xy xytan 例如:例如:上上连连续续在在),( 上上连连续续在在)2,2(
11、 xysin 2021-11-624处处间间断断在在点点0 x 0, 2, 0, 1)(xxxfy xyo122021-11-625处处间间断断在在点点0 xxyo . 0, 1, 0, 0, 0, 1)(xxxxxxgy2021-11-626处处间间断断在在点点0 x2021-11-627.,;,)()(lim,)(0000000的的一一个个间间断断点点是是函函数数称称处处间间断断在在点点否否则则称称函函数数的的一一个个连连续续点点是是函函数数称称处处连连续续在在点点则则称称函函数数如如果果的的某某邻邻域域内内有有定定义义在在设设fxxffxxfxfxfxxfxx 定义定义1: 以上描述实质
12、上是同意的反复以上描述实质上是同意的反复, ,数学上要确切数学上要确切地刻画函数连续性地刻画函数连续性, ,必须用必须用极限极限作定量地描述作定量地描述. .(一)定义(一)定义2021-11-628缺缺一一不不可可三三个个条条件件处处连连续续蕴蕴涵涵以以下下在在点点函函数数,0 xf注意注意1;)1(0的的某某邻邻域域内内有有定定义义在在点点 xf以上三条中带本质性的是第二条,极限的存在性以上三条中带本质性的是第二条,极限的存在性.)()lim()(lim000 xfxfxfxxxx .0换换顺顺序序运运算算与与函函数数运运算算可可以以交交处处连连续续意意味味着着极极限限在在点点函函数数xf
13、注意注意2;)(lim)2(0存存在在极极限限xfxx.)()(lim)3(00相相等等与与函函数数值值极极限限xfxfxx2021-11-629;)()()(lim,()(0000处处左左连连续续在在则则称称且且上上有有定定义义在在设设函函数数xxfxfxfxaxfxx 定义定义2:;)()()(lim,),)(0000处处右右连连续续在在则则称称且且上上有有定定义义在在设设函函数数xxfxfxfbxxfxx (函数在一点的单侧连续性)(函数在一点的单侧连续性)2021-11-630),(.),()(,),()()1(bacfbaxfbaxf 记记作作内内连连续续在在开开区区间间则则称称每每
14、一一点点处处都都连连续续的的在在开开区区间间若若函函数数,.,)(,),()()2(bacfbaxfbabaxf 记记作作上上连连续续在在闭闭区区间间则则称称左左连连续续在在点点右右连连续续且且在在点点内内连连续续在在开开区区间间若若函函数数定义定义3: ( 函数在区间上的连续性)函数在区间上的连续性)2021-11-631(二)间断点的分类(二)间断点的分类根据间断点的不同情况,可以分为三类:根据间断点的不同情况,可以分为三类:1. 可去型间断点可去型间断点)(,)(lim00 xfxfxx但但是是不不等等于于存存在在 可去型间断不是本质性的间断可去型间断不是本质性的间断,可以重新可以重新定
15、义定义, 使其连续使其连续.)(lim)(00 xfxfxx 令令2021-11-632没没有有定定义义在在点点0sin)( xxxxf例如例如是是可可去去型型间间断断点点故故但但是是01sinlim0 xxxx 0,10,sin)(1xxxxxf若令若令的的一一个个连连续续点点就就成成为为则则)(01xfx 2021-11-6332. 第一类间断点第一类间断点但但是是不不相相等等都都存存在在和和,)(lim)(lim00 xfxfxxxx )(lim)(lim).(0()0(,)(00000 xfxfxfxfxxfxxxx 跃跃度度等等于于处处发发生生跳跳跃跃在在点点函函数数 .0, 1,0
16、, 0,0, 1sgn时时当当时时当当时时当当xxxxy例例 符号函数符号函数 是是第第一一类类间间断断点点0 x2021-11-634至至少少一一个个不不存存在在和和)(lim)(lim00 xfxfxxxx 3. 第二类间断点第二类间断点xy1 是是第第二二类类间间断断点点0 xxy1sin 例例 2021-11-635五、函数连续性的基本性质五、函数连续性的基本性质(一)连续性定义的等价形式:(一)连续性定义的等价形式:下下列列命命题题等等价价则则的的某某邻邻域域内内有有定定义义在在设设,)(0 xxf)()(lim)1(00 xfxfxx )()()()2(0 xxfxf )0)(li
17、m(0 xxx 其中其中2021-11-636)()()(,0)(lim)4(00000 xfxfxfxxxxfx 既既左左连连续续又又右右连连续续在在点点)(03xf)()(lim)(lim000 xfxfxfxxxx (二)连续函数的有界性:(二)连续函数的有界性:)(,000有有界界在在点点简简称称某某邻邻域域上上有有界界的的在在则则连连续续在在点点若若函函数数xfxfxf2021-11-637.)()(),(, 0., 0)(,000000同同号号与与上上使使在在即即的的某某邻邻域域上上保保号号在在点点则则且且连连续续在在点点若若函函数数xfxfxxxfxfxf (三)连续函数的保号性
18、:(三)连续函数的保号性:2021-11-638连续连续也在也在0 )2(xgf 则则连连续续都都在在点点若若,0 xgf连连续续也也在在函函数数对对任任意意常常数数0 ,)1(xgf 连续连续也在也在则则若若00, 0)()3(xgfxg (四)连续函数的运算性质:(四)连续函数的运算性质:.)(),(,)(,)()4(00000连连续续在在则则复复合合函函数数且且连连续续在在连连续续在在若若ttgftgxxxfttgx 2021-11-639(六)初等函数的连续性(六)初等函数的连续性 初等函数在其定义区间上是连续的。初等函数在其定义区间上是连续的。 (五)(五) 关于反函数的连续性关于反函数的连续性.)(),()(),()(,)(1严严格格单单调调且且连连续续上上也也或或区区间间在在闭闭则则其其反反函函数数单单调调且且连连续续上上严严格格在在闭闭区区间间若若函函数数afbfbfafyfxbaxfy .,21cos)(znnxxxf 定定义义域域为为离离散
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高品质石斛交易协议2024年
- 草皮买卖2024年协议详细范本
- 2024年地毯业交易协议样本
- 2024土石方爆破作业协议格式
- 特殊天气下的雨污水管网应急方案
- 儿童夏令营防溺水安全管理方案
- 2024加盟连锁业务合作协议模板
- 房屋建设2024钢筋施工分包劳务协议
- 2024年行业罐体拆除协议格式
- 2024年商业借款协议模板精确
- 零工市场(驿站)运营管理投标方案(技术方案)
- 2024-2025学年小学信息技术(信息科技)四年级下册浙教版(2023)教学设计合集
- 旅游纸质合同模板
- 2024年新人教版三年级数学上册《教材练习12练习十二(附答案)》教学课件
- 全国食品安全宣传周诚信尚俭共享食安食品安全课件
- 部编版五年级上册快乐读书吧练习题含答案
- 飞机维修计划与调度管理考核试卷
- 2024年石家庄市长安区四年级数学第一学期期末复习检测试题含解析
- 2024年中小学“1530”安全教育实施方案
- 生猪屠宰兽医卫生人员考试题库答案(414道)
- 2024-2030年中国高纯锗 (HPGE) 辐射探测器行业运营前景及发展现状调研报告
评论
0/150
提交评论