版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实验三 利用MATLAB进行时域分析一、实验目的(1) 学会使用MATLAB编程绘制控制系统的单位阶跃响应曲线;(2) 研究二阶控制系统中,x、wn对系统动态特性和时域指标的影响;(3) 掌握准确读取动态特性指标的方法;(4) 分析二阶系统闭环极点和闭环零点对系统动态性能的影响;(5) 研究三阶系统单位阶跃响应及其动态性能指标与其闭环极点的关系;(6) 研究闭环极点和闭环零点对高阶系统动态性能的影响;(7) 了解高阶系统中主导极点与偶极子的作用;(8) 了解系统阶跃响应、脉冲响应和斜坡响应输出曲线之间的联系与差别。二、实验原理及内容1. 求系统的特征根 若已知系统的特征多项式D (s),利用r
2、oots ( ) 函数可以求其特征根。若已知系统的传递函数,利用eig ( ) 函数可以直接求出系统的特征根。2、求系统的闭环根、和n 函数damp ( ) 可以计算出系统的闭环根、和wn。3、零极点分布图可利用pzmap()函数绘制连续系统的零、极点图,从而分析系统的稳定性,调用格式为:pzmap(num,den) 【范例3-1】给定传递函数: 利用下列命令可自动打开一个图形窗口,显示该系统的零、极点分布图,如图3- 所示。>> num=3,2,5,4,6; den=1,3,4,2,7,2;pzmap(num,den)title(¹Pole-Zero Map¹
3、)% 图形标题。图3- 1 MATLAB函数零、极点分布图4、求系统的单位阶跃响应 step ( ) 函数可以计算连续系统单位阶跃响应(impulse( ) 函数可以计算连续系统单位脉冲响应): step (sys) 或step ( sys , t ) 或step (num , den)函数在当前图形窗口中直接绘制出系统的单位阶跃响应曲线,对象sys可以由tf ( ),zpk ( ) 函数中任何一个建立的系统模型。第二种格式中t可以指定一个仿真终止时间,也可以设置为一个时间矢量(如t0 : dt : Tfinal,即dt是步长,Tfinal是终止时刻)。如果需要将输出结果返回到MATLAB工作
4、空间中,则采用以下调用格式: c=step(sys) 此时,屏上不会显示响应曲线,必须利用plot()命令查看响应曲线。plot 可以根据两个或多个给定的向量绘制二维图形。【范例3-2】已知传递函数为:利用以下MATLAB命令可得阶跃响应曲线如图3- 所示。>> num=0,0,25; den=1,4,25;step(num,den)grid % 绘制网格线。title(¹Unit-Step Response of G(s)=25/(s2+4s+25) ¹) % 图像标题图3- 2 MATLAB绘制的响应曲线还可以用下面的语句来得出阶跃响应曲线>>
5、G=tf(0,0,25,1,4,25); t=0:0.1:5; % 从0到5每隔0.1取一个值。 c=step(G,t);% 动态响应的幅值赋给变量c plot(t,c) % 绘二维图形,横坐标取t,纵坐标取c。 Css=dcgain(G) % 求取稳态值。系统显示的图形类似于上一个例子,在命令窗口中显示了如下结果 Css= 15、求阶跃响应的性能指标MATLAB提供了强大的绘图计算功能,可以用多种方法求取系统的动态响应指标。首先介绍一种最简单的方法游动鼠标法。对于例2,在程序运行完毕后,在曲线中空白区域,单击鼠标右键,在快捷菜单中选择”characteristics”,包含:Peak res
6、ponse (峰值); settling time (调节时间);Rise time(上升时间);steady state(稳态值);在相应位置出现相应点,用鼠标单击后,相应性能值就显示出来。用鼠标左键点击时域响应曲线任意一点,系统会自动跳出一个小方框,小方框显示了这一点的横坐标(时间)和纵坐标(幅值)。这种方法简单易用,但同时应注意它不适用于用plot()命令画出的图形。【自我实践1】若已知单位负反馈前向通道的传递函数为:,试作出其单位阶跃响应曲线,准确读出其动态性能指标,并记录数据。另一种比较常用的方法就是用编程方式求取时域响应的各项性能指标。与游动鼠标法相比,编程方法稍微复杂,但可以获取
7、一些较为复杂的性能指标。若将阶跃响应函数step( )获得系统输出量返回到变量y中,可以调用如下格式 y,t=step(G) 该函数还同时返回了自动生成的时间变量t,对返回变量y和t进行计算,可以得到时域性能指标。 峰值时间(timetopeak)可由以下命令获得: Y,k=max(y);timetopeak=t(k) 最大(百分比)超调量(percentovershoot)可由以下命令得到:C=dcgain(G);Y,k=max(y); percentovershoot=100*(Y-C)/Cdcgain( )函数用于求取系统的终值。 上升时间(risetime)可利用MATLAB中控制语句
8、编制M文件来获得。要求出上升时间,可以用while语句编写以下程序得到:C=dcgain(G);n=1;while y(n)<C n=n+1;endrisetime=t(n)在阶跃输入条件下,y 的值由零逐渐增大,当以上循环满足y=C时,退出循环,此时对应的时刻,即为上升时间。对于输出无超调的系统响应,上升时间定义为输出从稳态值的10%上升到90%所需时间,则计算程序如下:C=dcgain(G);n=1; while y(n)<0.1*C n=n+1; endm=1; while y(n)<0.9*C m=m+1; endrisetime=t(m)-t(n) 调节时间(set
9、llingtime)可由while语句编程得到:C=dcgain(G);i=length(t); while(y(i)>0.98*C)&(y(i)<1.02*C) i=i-1;endsetllingtime=t(i)用向量长度函数length( )可求得t序列的长度,将其设定为变量i的上限值。自我检测1:>> G1=tf(0,0,100,1,5,0);G2=1;G=feedback(G1,G2) Transfer function: 100-s2 + 5 s + 100 >> num=0,0,100;>> den=1,5,100;>
10、> step(num,den)>> grid>> title('Unit-Step Response')>>上升时间:0.129s;峰值时间:1.42s;调节时间:1.41s;超调:42% 稳态值:1【范例3-3】已知二阶系统传递函数为:利用下面的stepanalysis.m程序可得到阶跃响应如图3-及性能指标数据。>> G=zpk( ,-1+3*i,-1-3*i ,3); % 计算最大峰值时间和超调量。 C=dcgain(G) y,t=step(G);plot(t,y)gridY,k=max(y);timetopeak=t
11、(k)percentovershoot=100*(Y-C)/C% 计算上升时间。n=1;while y(n)<C n=n+1;endrisetime=t(n)% 计算调节时间。i=length(t); while(y(i)>0.98*C)&(y(i)<1.02*C) i=i-1; end setllingtime=t(i)运行后的响应图如图3-,命令窗口中显示的结果为C =timetopeak = 0.30001.0491percentovershoot =risetime = 35.09140.6626setllingtime = 3.5337图3-3 二阶系统阶跃
12、响应用游动鼠标法求取此二阶系统的各项性能指标与本例是一致的。6、分析n不变时,改变阻尼比x,观察闭环极点的变化及其阶跃响应的变化。【自我实践2】二阶系统,n=10,当x0,0.25,0.5,0.75,1,1.25时,求对应系统的闭环极点、自然振荡频率及阶跃响应曲线;并分析x对系统性能的影响。参考程序:阶跃响应曲线:自我实践2:>> num=100;i=0;for sigma = 0:0.25:1.25den = 1 2*sigma*10 100;damp(den)sys = tf(num,den);i=i+1;step(sys,2)hold onend Eigenvalue Dam
13、ping Freq. (rad/s) 0.00e+000 + 1.00e+001i 0.00e+000 1.00e+001 0.00e+000 - 1.00e+001i 0.00e+000 1.00e+001 Eigenvalue Damping Freq. (rad/s) -2.50e+000 + 9.68e+000i 2.50e-001 1.00e+001 -2.50e+000 - 9.68e+000i 2.50e-001 1.00e+001 Eigenvalue Damping Freq. (rad/s) -5.00e+000 + 8.66e+000i 5.00e-001 1.00e+0
14、01 -5.00e+000 - 8.66e+000i 5.00e-001 1.00e+001 Eigenvalue Damping Freq. (rad/s) -7.50e+000 + 6.61e+000i 7.50e-001 1.00e+001 -7.50e+000 - 6.61e+000i 7.50e-001 1.00e+001 Eigenvalue Damping Freq. (rad/s) -1.00e+001 1.00e+000 1.00e+001 -1.00e+001 1.00e+000 1.00e+001 Eigenvalue Damping Freq. (rad/s) -2.0
15、0e+001 1.00e+000 2.00e+001 -5.00e+000 1.00e+000 5.00e+000 >> gridhold offtitle('阻尼比不同时的阶跃响应曲线')lab1='zunibi = 0'text(0.3,1.9,lab1),lab2='zunibi = 0.25'text(0.3,1.5,lab2),>> lab3='zunibi = 0.5'text(0.3,1.2,lab3),lab4='zunibi = 0.75'text(0,3,1.05,lab
16、4),lab5='zunibi = 1'text(0,35,0.9,lab5),lab6='zunibi = 1.25'text(0,35,0.8,lab6)>>n不变时,改变阻尼比x,当>1时,系统为过阻尼系统,系统的阶跃响应为非震荡过程,瞬态特性为单调变化曲线,无超调和震荡;当0<<1时,系统为欠阻尼系统,系统的阶跃响应为非震荡过程,越小,超调量越大,震荡次数越多,调节时间越长。当=0时,系统为零阻尼系统,系统的阶跃响应为持续的等幅震荡。当<0时,输出量做发散震荡。7、保持x0.25不变,分析n变化时,闭环极点对系统单位阶
17、跃响应的影响。【自我实践3】二阶系统,x0.25,当n=10,30,50时,求系统的阶跃响应曲线;并分析n对系统性能的影响。参考程序:阶跃响应曲线:自我实践3:>> sgma=0.25;i=0;>> for wn=10:20:50num=wn2;den=1,2*sgma*wn,wn2;sys = tf(num,den);i=i+1;step(sys,2)hold on,gridend>> hold off>> title('wn变化时系统的阶跃响应曲线')>> lab1='wn=10'text(0.35
18、,1.4,lab1),>> lab2='wn=30'text(0.12,1.3,lab2),>> lab3='wn=50'text(0.05,1.2,lab3)>>结论:当不变时,n 越大,峰值时间越短,调节时间越短,上升时间越短,超调量不变。【综合实践】通过分别改变典型二阶系统的和n,观察系统在脉冲、阶跃、斜坡信号作用下的响应特性,求时域指标,总结参数对系统性能影响的规律。nts(s)tp(s)%tr(s)响应曲线参数影响说明脉冲>1设=20.278.34.26当>1时,系统为过阻尼系统,系统的阶跃响应为非震荡过
19、程,瞬态特性为单调变化曲线,无超调和震荡;当0<<1时,系统为欠阻尼系统,系统的阶跃响应为非震荡过程,越小,超调量越大,震荡次数越多,调节时间越长。当=0时,系统为零阻尼系统,系统的阶跃响应为持续的等幅震荡。当<0时,输出量做发散震荡。当不变时,n 越大,峰值时间越短,调节时间越短,上升时间越短,超调量不变。115.70.8520<<1设=0.50.246.46.3619.291.27=00.21-1<<0设=-0.50.21<-1设=-20.21阶跃>10.274.441.2114.98.230<<10.240.41816.3
20、8.2218.083.616.31.64=00.21-1<<00.21<-10.21响应曲线:脉冲=2 n = 0.2=2 n = 1=0.5 n = 0.2=0.5 n = 1=0 n = 0.2=0 n = 1=-0.5 n =0.2=-0.5 n =1=-2 n =0.2=-2 n =1=2 n =0.2=2, n =1=0.5 n =0.2=0.5 n =1=0 n =0.2=0 n =1=-0.5 n =0.2=-0.5 n =1=-2 n =0.2=-2 n =18、分析系统零、极点对系统阶跃响应的影响。【自我实践4】试作出以下系统的阶跃响应,并与原系统的阶跃响应
21、曲线进行比较,作出实验结果分析。num=0,0,10;den=1,2,10;step(num,den)1)系统有零点情况:z=-5,即; num=0,2,10;den=1,2,10;step(num,den)结果分析:增加零点,阶跃响应上升时间变短,峰值时间变短,超调量变小,调节时间变短,系统稳态值不变。2) 分子与分母多项式阶数相等:n=m=2,;num=1,0.5,10;den=1,2,10;step(num,den)结果分析:分子与分母多项式阶数相等,系统从稳态震荡,峰值时间和调节时间均减小,稳态值不变。3) 分子多项式零次项系数为0,;num=1,0.5,0;den=1,2,10;st
22、ep(num,den)结果分析:零初值的系统,零时刻对应的纵坐标为零,非零初值系统零时刻对应的纵坐标不为零。4) 原系统的微分响应,微分系数为1/10,。num=0,1,0;den=1,2,10;step(num,den)结果分析:若没有零点,对于单位阶跃响应的稳态值为1,而分子部分出现零值时,单位阶跃响应的稳态值为0。【综合实践】附加零点的影响。R(s)W0(s)Y(s)-设原系统为:图3-4 原系统结构图R(s)P(s)Y(s)-W0(s)附加开环零点的情况:图3-5 附加开环零点的系统结构图R(s)P(s)Y(s)-W0(s)附加闭环零点的情况为:图3-6 附加闭环零点的系统结构图其中
23、P(S)=(TS+1)、。这里取n=1、=0.5零点参数闭环传递函数单位阶跃响应曲线说明零点的影响附加开环零点T=0.20.2 s + 1-s2 + 1.2 s + 1增加系统零点会使系统稳定性增加,但会使调节时间变长。系统零点并不改变原有系统的稳定性,但会影响系统的动态参数。零点越大,上升时间和峰值时间以及调节时间越短,超调量越大,稳态值不变。T=1s + 1-s2 + 2 s + 1附加闭环零点T=0.20.2 s + 1-s2 + s + 1T=1s + 1-s2 + s + 1p=tf(0.2,1,1);W=tf(1,1,1,0);G=feedback(p*W,1)step(G)Tra
24、nsfer function: 0.2 s + 1-s2 + 1.2 s + 1p=tf(1,1,1);W=tf(1,1,1,0);G=feedback(p*W,1)step(G)Transfer function: s + 1-s2 + 2 s + 1clcp=tf(0.2,1,1);W=tf(1,1,1,0);G=feedback(W,1);G1=p*Gstep(p*G)Transfer function: 0.2 s + 1-s2 + s + 1clcp=tf(1,1,1);W=tf(1,1,1,0);G=feedback(W,1);G1=p*Gstep(p*G)Transfer fun
25、ction: s + 1-s2 + s + 1 >>【综合实践】附加极点的影响。当附加零点中的函数变为:P(S)=1/(TS+1),则上图3-4、3-5、3-6成为附加极点的情况。假设取n=1、=0.5,用单位阶跃信号作为系统输入,按照下表的要求输入参数,记录仿真曲线于下表。极点参数闭环传递函数响应曲线说明极点的影响附加开环极点T=0.21-0.2 s3 + 1.2 s2 + s + 1系统的稳定性不变,上升时间、超调时间、峰值时间均变长,超调量减小。T=1 1-s3 + 2 s2 + s + 1附加闭环极点T=0.2 1-0.2 s3 + 1.2 s2 + 1.2 s + 1T=
26、11-s3 + 2 s2 + 2 s + 1clc;p=tf(1,0.2,1);W=tf(1,1,1,0);G=feedback(p*W,1)step(G)Transfer function: 1-0.2 s3 + 1.2 s2 + s + 1 >>clc;p=tf(1,1,1);W=tf(1,1,1,0);G=feedback(p*W,1)step(G)Transfer function: 1-s3 + 2 s2 + s + 1clcp=tf(1,0.2,1);W=tf(1,1,1,0);G=feedback(W,1);G1=p*Gstep(p*G)Transfer functi
27、on: 1-0.2 s3 + 1.2 s2 + 1.2 s + 1 >>clcp=tf(1,1,1);W=tf(1,1,1,0);G=feedback(W,1);G1=p*Gstep(p*G)Transfer function: 1-s3 + 2 s2 + 2 s + 19、三阶系统的单位阶跃响应分析研究三阶系统单位阶跃响应及其动态性能指标与其闭环极点的关系。【自我实践5】已知三阶系统闭环传递函数为, 编写MATLAB程序,求取系统闭环极点及其单位阶跃响应,读取动态性能指标。clc;Z=-2,-3;P=-4,-1+j,-1-j;K=5;G=zpk(Z,P,K)eig(G)step(
28、G)Zero/pole/gain: 5 (s+2) (s+3)-(s+4) (s2 + 2s + 2) ans = -4.0000 -1.0000 + 1.0000i -1.0000 - 1.0000i 改变系统闭环极点的位置, ,即将原极点s = - 4改成s= - 0.5,使闭环极点靠近虚轴,观察单位阶跃响应和动态性能指标变化。clc;Z=-2,-3;P=-0.5,-1+j,-1-j;K=0.625;G=zpk(Z,P,K)eig(G)step(G)Zero/pole/gain: 0.625 (s+2) (s+3)-(s+0.5) (s2 + 2s + 2) ans = -0.5000 -
29、1.0000 + 1.0000i -1.0000 - 1.0000i 改变系统闭环零点的位置,即将原零点s = - 2改成s = - 1,观察单位阶跃响应及其动态性能指标的变化。clc;Z=-1,-3;P=-4,-1+j,-1-j;K=10;G=zpk(Z,P,K)eig(G)step(G)Zero/pole/gain: 10 (s+1) (s+3)-(s+4) (s2 + 2s + 2) ans = -4.0000 -1.0000 + 1.0000i -1.0000 - 1.0000i 分析上面实验,给出结论。如果系统的闭环极点离虚轴远,则相应的瞬态分量就衰减得快,系统的调节时间短。当系统闭
30、环极点接近虚轴时,系统阻尼增加,系统超调量减小,调节时间变长。当闭环零点减小后,相当于减小了系统阻尼,系统峰值时间减小,超调时间减小,超调量增大。10、高阶系统的单位阶跃响应分析【自我实践6】已知控制系统的闭环传递函数 用MATLAB软件分析该系统的单位阶跃响应及其动态性能指标。clc;num=0,0,0,0.50001,1.05;den=0.0625,0.6875,1.6875,1.625,1;G=tf(num,den)zpk(G)step(G)Transfer function: 0.5 s + 1.05-0.0625 s4 + 0.6875 s3 + 1.688 s2 + 1.625 s + 1 Zero/pole/gain: 8.0002 (s+2.1)-(s+8) (s+2) (s2 + s + 1) >> 将该系统的阶跃响应与二阶系统的单位阶跃响应比较分析闭环系统主导极点的特点及作用,clc;num=0,0,1.05;den=1,1,1;G=tf(num,den)zpk(G)step(G)Transfer function: 1.05-s2 + s + 1 Zero/pole
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考物理总复习专题十二机械振动光学第1讲机械振动、振动图像练习含答案
- 教你写一份合格的上班玩方式保证书
- 《化学方程式》课件
- 高考地理一轮复习第五章地表形态的塑造第一节常见地貌类型和地貌的观察课件
- 河北省南宫市高中地理 锋面系统与天气教案 新人教版必修1
- 春高中化学 第三章 金属及其化合物 第三节 用途广泛的金属材料教案 新人教版必修1
- 高中数学 第2章 统计 2.2 总体分布的估计 2.2.2 频率分布直方图与折线图教案 苏教版必修3
- 2024-2025学年高中化学 第二章 第三节 分子的性质 第2课时 较强的分子间作用力-氢键教案 新人教版选修3
- 2024年六年级道德与法治下册 第四单元 让世界更美好 9 日益重要的国际组织教案 新人教版
- 高中英语 Unit 3 Travel journal Period 1教案 新人教版必修1
- 草莓创意主题实用框架模板ppt
- 高处作业吊篮定期检修与保养项目表
- 山大口腔颌面外科学课件第5章 口腔种植外科-1概论、口腔种植的生物学基础
- 部编人教版六年级上册语文 第25课 少年闰土 教学课件
- 系统辨识课件:第4章 数学模型的最小二乘法辨识
- 【人教版】高一政治必修2导学案:政治生活7.1《处理民族关系的原则:平等、团结、共同繁荣》
- 第六届全国仪表技能大赛DCS实操题1009a
- 土壤分析技术规范(第二版)
- 木材力学基本性质和概述
- 拆除设施计划及方案(参考模板)
- 《电工复审》培训课件
评论
0/150
提交评论