下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、中考核心知识点专题练习一线三等角德化第五中学:罗文平1、直角的情况:ZABPZJPCD2、钝角的情况:ZABPS/JPCD(图2)一、知识梳理(图1)2(1)如图 1:已知三角形 ABC 中,AB=AC, ZADE 二 ZB,那么一左存在的相似三角形有 _(2)如图 2:已知三角形 ABC 中,ABAC, ZDEF=ZB,那么一泄存在的相似三角形有 _(3)如图 2,若 AB=AC, ZB= ZEDF,BD 二 CD,连接 DF,那么一定存在的相似三角形 二、例题解析例 1.如图,在边长为 2 的等边三角形 ABC 中,D 是 BC 边上任意一点,AB 边上有一点 E, AC 边上有一点 F,
2、使 ZEDF 二 ZABC.已知 BD 二 1, BE 二丄,求 CF 的长.3练习1 已知 ZkABC 中 AB 二 AC 二 6. BC 二 8, ZBAC 二 120 度.D 是 BC 边上任意一点,AB 边上有一点 E, AC 边上有一点 F,使 ZEDF 二 ZC.已知 BD 二 6、BE 二 4求:CF 的长2如图等边/!氏中,边长为 6, Q 是庞上动点,(1)求证:HBDEsCFD :3(2)当BD-尸 Cl 时,求 BE 例 2在SABC中,ZC = 90,AC = 4,5C = 3,0 是 AB 上的一点,E且护环点 P 是 AC 上的-个动点,叫交线段 BC 于点Q,(不
3、与点 B,C 重合),已知 AP 二 2,求 CQ练习在直角三角形 ABC 中,ZC = 90, AB = BC,D是 AB 边上的一点,E 是在 AC 边上的一个动 点,(与 A,C 不重合),DF 丄DE、DF与射线 BC 相交于点F.C当点 D 是边 AB 的中点时,求证:DE = DF ;D例 3.已知在等腰三角形 ABC 中,AB=AC, D 是 BC 的中点,EDF=ZB. 求证:ABDESADFE.练习在边长为 4 的等边AABC中,D 是 BC 的中点,点 E、F 分别在AB、AC 上(点 D 不与点 C、点 3 重合),且保持ZEDF = /ABC,连接EF.已知 BE 二
4、1, DF 二 2 求 DE 的值;求 ZBED 二 ZDEF.例 4.如图, 已知边长为 3 的等边三角形 ABC,点 F 在边 BC 上, CF=b 点 E 是射线 BA 上一动点,以线段 EF 为边向右侧作等边三角形 EFG,直 线 EG 与 FG 分别交直线 AC 于点 M、N,(1)写出图中与相似的三角形:(2)证明其中一对三角形相似:(3)设 BE 二 x,MN 二 y,求 y 与 x 之间的函数关系式,并写出自变呈 x 的取值范囤.练习如图,在磁中,AB = AC = 8, BC = 10,D 是 3C 边上的一个动点,点 E 在 AC 边 上且ZADE=ZC .(1)求证:卜
5、ABEDCE;(2)如果BD = x, AE = y,求 y 与 x 的函数解析式,并写岀自 变量 X的取值范围;(3)当点 D 是 BC 的中点时,试说明月庞是什么三角形,并说 明理由.B三.巩固提髙1如图,在AABC中,ZC = 90 , AC = 6,竺=1 D 是 BC 边的中点,E 为 AB边BC4上的一个动点,作ZDEF =90 . EF 交射线 BC 于点 F.设BE = x.ABED 的而积为 y(1)求 y 关于兀的函数关系式.并写出自变量 x 的取值范【札(2)如果以 B、E、F 为顶点的三角形与 ABED 相似,求BED 的面积.2如图,已知在月庞中,妙月 06,BE、Q
6、 是曲上一点,妙 2,厅是 氏上一动点,联结 DE,并作ZDF = Z,射线肘交线段 M 于尸.(1)求证:bDBEsECF;(2)当尸是线段中点时,求线段庞的长;(3)联结。尸,如果耐与宓相似,求应的长.3如图,AABC中,AB = AC = 0, BC = 2,点 D 在边 BC 上,且BD = 4,以 点 D 为顶点作ZEDF= ZB ,分别交边 AB 于点 E,交射线 CA 于点 F.(1)当AE = 6时,求 AF 的长;(2)当以点 C 为圆心 CF 长为半径的 OC 和以点 A 为圆心 AE 长为半径的 0A 相切时,求BE 的长:(3)当以边 AC 为直径的 OO 与线段 DE
7、 相切时,求 BE 的长.(备用图)4.如图,在ABC中,J5=AC=4,BC=6,ZB= ZADE,点 D、f 分别在證、EQ 上(点 D与万、Q 不重合),设BD=x, AE=y ,AD=z,SX,D=S .(1)求cosB;(2)求证:ABDS/DCE;y/y(3)求,与 x 之间的函数关系式,并求自变量 x 的取值范围;(4)求 z 与兀之间的函数关系式及 S 与;r 之间的函数关系式,B- (5)当点 Q 在氏上移动时,4 宓是否有可能是一个直角三角形?若 有可能请求出助的长:若不能请说明理由;(6)当点。 在證上移动时, 4 山近是否有可能是一个等腰三角形?若有可能请求出助的 长:若不能请说明理由:(7)当点。在證上移动时,是否存在以 D 为圆心、DB 为半径的圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《诊断性试验》课件
- 2025年全球新型穿戴设备行业概况及应用领域调研报告
- 2024年农业局上半年工作总结
- 税务知识普及总结
- 小暑节气消费解读
- 双十一:餐饮行业的转型新机遇
- 汽车电商营销蜕变
- 小学六年级毕业演讲稿范文合集8篇
- 2023年-2024年项目部安全管理人员安全培训考试题【考点梳理】
- 2023年-2024年项目部安全培训考试题附完整答案(考点梳理)
- 脚手架施工验收表
- 刑事案件律师会见笔录
- 危险性较大的分部分项工程监理巡视表-有限空间
- 2023-2024学年成都市成华区六上数学期末监测模拟试题含答案
- 2023-2024学年六盘水市六枝特区六年级数学第一学期期末质量检测模拟试题含答案
- ECS-700系统控制系统介绍
- 粉末涂料有限公司原、辅料库安全风险分级清单
- 六上语文必读名著《小英雄雨来》考点总结
- THNNJ 0001-2023 农用连栋钢架大棚技术规范
- 垃圾分类文献综述
- CRH2型动车组牵引变流器知识概述
评论
0/150
提交评论