版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 毕业设计(论文)外文资料翻译系部: 机械系 专 业: 机械工程及自动化 姓 名: 学 号: (用外文写)外文出处: department of chemistry and the james franck institute 附 件: 1.外文资料翻译译文;2.外文原文。 指导教师评语:译文基本能翻译表达出原文的内容,条理较为分明,语句基本通顺,总体译文质量尚可,但少数专业术语翻译不够准确,一些语句比较生硬。 签名: 年 月 日注:请将该封面与附件装订成册。附件1:外文资料翻译译文优化活塞行动改进的发动机性能(奥托循环或优化热引擎或最优控制)michael mozurkewich和 r. s
2、. berry伊利诺伊州,芝加哥大学化学系和,詹姆斯法朗克研究所,由r.斯蒂芬莓果, 1980年12月29日摘要 利用有限时间热力学方法发现奥托循环的优先时间路径及摩擦和热渗漏。 最优性由工作的最大化定义每个周期; 系统被控制在一个固定的空间内,因此便能获得最大动力。 结果是每一个近正弦的发动机改善了大约10%的效率(第二定律效率)。有限时间热力学是引伸常规热力学相关原则上横跨主题的整个间距,从最抽象的水平到广泛的应用。 方法是根据广义热力学的创立(1)为包含时间或对在限制之中的条件估计在系统之内(2)和在产生对应于那些广义潜力的极值的最佳路径的计算。迄今为止,有限时间热力学的工作集中于较为理
3、想化的模型(2-7)和存在性定理(2),且全部集中在抽象方面。这项工作是希望作为一个步骤连接在实用的有限时间热力学方面涌现了的抽象热力学概念,工程学方面的课题,一台实用机器的设计的原则。在这个报告中,我们用接近理想的奥多周期来研究内燃机模型,但由于频率限制使得在实际的发动机中是以二主要损失的形式存在。 我们通过“控制”时间改善活塞运动来优化发动机的性能。 结果,没有进行一项详细的工程学研究,我们能够通过受活塞的时间路径的影响和优化活塞行动获得效率的改善来估计了解是怎么损失的。模 型我们的模型是基于标准的四冲程奥托循环。这包括进气冲程、压缩冲程、作功冲程和排气冲程。 我们在这里简要地描述这个模型
4、和发现优化活塞行动的使用方法及基本特点。 在别处将给一个详细的介绍。我们假设,压缩比、空燃比、燃油消耗率和时间全部是固定的。这些制约因素有两个目的。首先,他们利用减少优化问题来找到活塞运动。 并且,他们保证在这分析没考虑的性能准则与那些是为一个实用的发动机做比较的。 放松这些限制中的任一个可能进一步改善性能。我们采取的损失是热渗漏和摩擦。 这两个是依靠效率来影响系统的时间反应。 热泄漏假设是圆筒的瞬间表面和与在工作流体和墙壁之间的温差比例(即,牛顿热耗)。 由于这个温度区别最大是在作功冲程,热渗漏是只包含在这个冲程中。摩擦力与活塞速度成正比,对应于润滑良好的金属表面;因此,摩擦损失也直接与速度
5、正方形有关。 这些损失在所有冲程中是不同样的。高压在作功冲程使它的摩擦系数高于在其他冲程。 进气冲程得益于。我们优选的作用是确定每循环的最大功率。 由于燃料消费和周期是固定的,这也与最大化效率和平均功率是等效的。在寻找优选的活塞行程时,我们首先分离了有能量和无能量的冲程。 非特指,但确定的时间t是指作功冲程中无能量冲程剩下的时间。 循环的两个部分优选以一个限制时间和然后结合找到每循环的总工作量。 时间t的作功冲程后来变化了,并且这个过程会被重覆,直到净工作量达到最大值。采取一个简单形式来描述无能量冲程的最佳活塞运动。在每个冲程的大多数时间,由于摩擦损失与速度的二次方成比例,最宜的运动取决于速度
6、常数。 在冲程的末期,活塞以允许的最大效率加速并且减速。 由于摩擦损失在进气冲程较高,与其他两个相比,这个最佳的解决办法是把更多的时间分配到这个冲程。活塞速度与作用时间的关系显示在图1中。由于热泄漏的出现,作功冲程更难优选。问题是通过使用最优控制理论的变化技术解决的 (8)。利用实际情况的非线性的微分方程产生活塞的运动方程式。 这些都是实际数值。整个循环运动的结果显示在图1上。图1 活塞速度与作用时间的关系,从作功冲程开始。最大允许的加速度是2 x 104 m/sec2。活塞行动的不对称的形状在作功冲程中的摩擦和热泄漏损失之间交替出现。在冲程初气体是热的,能产生高效率,并且散热率高。在作功冲程
7、中得益于活塞速度高。这个冲程被选出,气体冷却率和热泄漏相对于摩擦损失减少。 结果,当作功冲程进行时,最佳路径的移动速度更低。解决的办法在加速度和上首先获得了极大的加速度然后迅速减速。后者情况以“收费公路”解决方案在其他环境下产生一个交叉结果 (9)。在这些速度之间以最高效率进行加速和减速,使系统尽量的在它的最佳的向前和向后速度操作下尽可能延长。 这样,系统花费同样多时间尽可能沿它的最佳路径移动。结 果计算的参量从参考10中获取,在给定的摩擦系数下,通过参考10中的变量调整摩擦损失的大小。 那些参量在表1中给出。一些典型的情况下的计算结果见表2,但在一个标准近正弦运动下,他们与常规奥托循环的发动
8、机相比有同一压缩比。为了优化发动机使第一列的常规发动机最大值,活塞加速度被限制在5 x 10 m3/sec2内,使得有效利用率 (有用功与可逆功的比率,也称第二定律效率)稍微提高。 如果发动机的活塞允许有4个时间的加速度,有效率将增加9%;如果加速度是不受强制的,有效率比以前将增加11%。表1 发动机参数*发动机参数:压缩比=8在最小容积的活塞位置=1厘米位移= 7 cm汽缸直径(b) = 7.98 cm汽缸容量(v) = 400 cm3周期(t) = 33.3毫秒/3600转每分钟热力学参量:压缩冲程 作功冲程最初的温度 333k 2795k摩尔气体 0.0144 0.0157恒定热容量容量
9、 2.5r 3.35r汽缸壁温度(t) = 600 k可逆循环的动能 (wr)= 435.7 j可逆的能力(wr/i)= 13.1千瓦损失条件:摩擦系数(a) = 12.9 kg/sec热泄漏系数(k)= 1305 千克/ (度/sec3)每循环的时间损耗和摩擦损失的能量= 50 j表2 结果(所有能量单位用焦耳)t',在作功冲程上所用的时间;wp在作功冲程完成的工作量;wt,每循环的净工作量;wf,摩擦损失的能量;wq,工作中的热泄漏损失的能量;q,热泄漏;tf,作功冲程结束时的温度;,有效利用率。这些改善是显而易见的,但不是最有利的。如果传统发动机的总损失是保持大约固定的常数,但是
10、减少高于80%的热耗和低于60%的摩擦损失,有效利用率获得提高,到达传统发动机有效利用率的17%以上。当润滑油流过发动机的最高温度附近时,在这个分析过程中的改善的主要来源是热耗的减少。 这就是为什么在较大的摩擦力下改善发动机的热泄漏和降低摩擦损失比发动机使用更好的绝缘材料要好,。最后,在相应时间内为优化发动机和为它的传统对应部分,它是指导研究活塞运动的最佳路径的方法。活塞的位置和作用时间的关系显示在图2上在结束时,强调在这工作中说明了一个热力学的系统非传统的优化被方法。而不是控制热效率、热容量、传热、摩擦系数、冷却水温度,或者热力发动机的其他通常参量,我们控制了发动机容量时间路径。图2 在作功
11、、排气、进气和压缩冲程中优化的()和传统的()活塞运动比较;最佳路径的最大加速度被限制在2 x 104 m3/sec2参考文献: 1、王遂双等主编汽车电子控制系统的原理与维修北京:北京理工大学出版社1998 2、弈其文主编上海帕萨特b5轿车故障诊断手册辽宁:辽宁科学技术出版社2003 3、杨怡主编汽车电子控制技术北京:机械工业出版社1999附件2:外文原文engine performance improved by optimized piston motion(otto cycle/optimized heat engines/optimal control)michael mozurkew
12、ich and r. s. berrydepartment of chemistry and the james franck institute,the university of chicago, chicago, illinois 60637contributed by r. stephen berry, december 29, 1980abstract the methods of finite-time thermodynamics are used to find the optimal time path of an otto cycle with friction and h
13、eat leakage. optimality is defined by maximization of the work per cycle; the system is constrained to operate at a fixed frequency,so the maximum power-is obtained. the result is an improvement of about 10% in the effectiveness (second-law efficiency) of a conventional near-sinusoidal engine.finite
14、-time thermodynamics is an extension ofconventional thermodynamics relevant in principle across the entire span of the subject, from the most abstract level to the most applied. the approach is based on the construction of generalized thermodynamic potentials (1) for processes containing time or rat
15、e conditions among the constraints on the system (2) and on the determination of optimal paths that yield the extrema corresponding to those generalized potentials.heretofore, work on finite-time thermodynamics has concentrated on ratheridealized models (2-7) and on existence theorems (2), all on th
16、e abstract side of the subject. this work is intended as a step connecting the abstract thermodynamic concepts that have emerged in finite-time thermodynamics with the practical, engineering side of the subject, the design principles of a real machine.in this report, we treat a model of the internal
17、 combustion engine closely related to the ideal otto cycle but with rate constraints in the form ofthe two major losses found in real engines. we optimize the engine by "controlling" the time dependence of the volume-that is, the piston motion. as a result, without undertaking a detailed e
18、ngineering study, we are able to understand how the losses are affected by the time path of the piston and to estimate the improvement in efficiency obtainable by optimizing the piston motion.the modelour model is based on the standard four-stroke otto cycle. this consists of an intake stroke, a com
19、pression stroke, a power stroke, and an exhaust stroke. here we briefly describe the basic features of this model and the method used to find the optimal piston motion. a detailed presentation will be given elsewhere.we assume that the compression ratio, fuel-to-air ratio, fuel consumption, and peri
20、od of the cycle all are fixed. these constraints serve two purposes. first, they reduce the optimization problem to finding the piston motion. also,they guarantee that the performance criteria not considered in this analysis are comparable to those for a real engine. relaxing any of these constraint
21、s can only improve the performance further.we take the losses to be heat leakage and friction. both of these are rate dependent and thus affect the time response of the system. the heat leak is assumed to be proportional to the instantaneoussurface of the cylinder and to the temperature difference b
22、etween the working fluid and the walls (i.e., newtonian heat loss). because this temperature difference is large only on the power stroke, heat loss is included only on this stroke. the friction force is taken to be proportional to the piston velocity, corresponding to well-lubricated metal-on-metal
23、 sliding;thus, the frictional losses are directly related, to the square ofthe velocity. these losses are not the same for all strokes. the high pressures in the power stroke make its friction coefficient higher than in the other strokes. the intake stroke has a contribution due to viscous flow thro
24、ugh the valve.the function we have optimized is the maximum work per cycle. because both fuel consumption and cycle time are fixed, this also is equivalent to maximizing both efficiency and the average power.in finding the optimal piston motion, we first separated the power and nonpower strokes. an
25、unspecified but fixed time t was allotted to the power stroke with the remainder of the cycle time given to the nonpower strokes. both portions of the cycle were optimized with this time constraint and were then combined to find the total work per cycle. the duration t of the power stroke was then v
26、aried and the process was repeated until the net work was a maximum.the optimal piston motion for the nonpower strokes takes a simple form. because of the quadratic velocity dependence of the friction losses, the optimum motion holds the velocity constant during most of each stroke. at the ends of t
27、he stroke, the piston accelerates and decelerates at the maximum allowed rate. because the friction losses are higher on the intake stroke, the optimal solution allots more time to this stroke than to the other two. the piston velocity as a function of time is shown in fig.1.the power stroke was mor
28、e difficult to optimize because ofthe presence of the heat leak. the problem was solved by using the variational technique of optimal control theory (8). the formalism yields the equation of motion of the piston as a fourthorder set of nonlinear differential equations. these were solved numerically.
29、 the resulting motion is shown in fig. 1 for the entire cycle.the asymmetric shape of the piston motion on the power stroke arises from the trade-off between friction and heat leak losses. at the beginning of the stroke the gases are hot, capable of yielding high efficiency, and the rate of heat los
30、s is high. it is therefore advantageous to make the velocity high on this part of the stroke. as work is extracted, the gases cool and the rate of heat leakage diminishes relative to frictional losses. consequently the optimal path moves to lower velocities as the power stroke proceeds.the solutions
31、 were obtained first with unlimited acceleration and then with limits on acceleration and deceleration. the latter situation yields a result familiar in other contexts under the name of "turnpike" solution (9). the system tries to operate as long as possible at its optimal forward and back
32、ward velocities, by accelerating and decelerating between these velocities at the maximum rates. in this way, the system spends as much time as possible moving along its best or turnpike path.resultsparameters for the computations were taken from ref. 10 or, in the case of the friction coefficient,
33、adjusted to give frictional losses of the magnitude cited in ref. 10. those parameters are given in table 1. the results of the calculations of some typical cases are given in table 2, where they are compared with the conventional otto cycle engine having the same compression ratio but a standard ne
34、ar-sinusoidal motion. the effectiveness (the ratio of the work done to the reversible work, also called the second-law efficiency) is slightly higher for the optimized engine whose piston-acceleration is limited to 5 x 103 m/sec2 ,the maximum of the conventional engine of the first row. if the pisto
35、n is allowed to have 4 times the acceleration of the conventional engine, the effectiveness increases 9%; if the acceleration is unconstrained, the improvement in effectiveness goes up to 11%.these values are typical, not the most favorable. if the total losses of the conventional engine are held ap
36、proximately constant but shifted to correspond to about 80% larger heat loss and about 60% smaller friction loss, the gain in effectiveness goes up, reaching more than 17% above the effectiveness of the corresponding conventional engine.the principal source of the improvement in use of energy in this analysis is in the reduction of heat losses when the work
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 致800运动员的加油稿汇编15篇
- 双11活动策划方案图片内容
- 昆虫记读后感600字范文初中(30篇)
- 生产实习报告范文6篇
- 水库抗旱方案
- 勤工俭学工作总结
- 《设计中的人机关系》说课稿(附教学设计)
- 天津市2024-2025学年高二上学期11月期中物理试题(无答案)
- 山东省枣庄市峄城区2024-2025学年五年级上学期期中道德与法治试题
- 河南省通许县+2024-2025学年七年级上学期期中考试道德与法治试卷
- 《云计算技术及应用》期末试卷二(含答案)
- 床单位终末清洁与消毒模拟实操培训课件
- 太阳能光伏材料回收与回收利用投资报告
- 启蒙思想家卢梭
- 诊所计划书范本
- 小学一年级新生学位申请表
- 西泠印社小学三年级上册书法
- 粮油保管员(中级)技能理论考试题库-上(单选题汇总)
- 医院志愿者培训课件
- 幼儿园中班健康《不一样的气味》PPT
- 机械厂加工车间变电所初步设计
评论
0/150
提交评论