七年级数学北师大版(下册)思维导图与知识点汇总_第1页
七年级数学北师大版(下册)思维导图与知识点汇总_第2页
七年级数学北师大版(下册)思维导图与知识点汇总_第3页
七年级数学北师大版(下册)思维导图与知识点汇总_第4页
七年级数学北师大版(下册)思维导图与知识点汇总_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、七年级数学北师大版下册思维与图及知识点汇总北师大版七年级下册数学知识点总结第一章:整式的乘除-单项式嘉运算I多项式同届教尊的乘法曷的乘方J积的乘方同底教幕的除去零指数早I负指数幕,整式的力D;底整式的乘法整式的除法单项式与学项期目策 单项式与多项式相乘 多项式与多项式相乘 平方差公式 完全平方公式 单项式除以单项式多项式除以单项式一单项式,都是数字与字母的乘积的代数式叫做单项式,2、单项式的数字因飙H做单嗔式的系数由3.单项式卬所有字母的指数和叫做单项式的欠数。人单独一个数或T字母也是单项式。5、只含有字母因式的单项式的系颊是。或*1。6、单独的一个数字是单项式,它的系数是它本身。¥

2、、单独的一个非零锄的次麴是0.8单项式中只能含有乘;去成北方运算,而不育给育加、戚等其他运算。9里嗔式的系域包括它前面的符号°1。、单项式的系数是带分数时,应化成假分投Ullx单顼式的系数是1-1时,通常都各数字"1412、单项式的次数仅与字母有美,与单哽式的系数无关二、多项式L、几个单项式的和叫做多项式。2、多项式卬的每一个单项式叫做多项式的项。3、多项式中不含字母的项叫做常数项。4、一个多项式有几项,就叫做几项式。5、多项式的每一项都包括项前面的符号。6、多项式没有系数的概念,但有次数的概念。7、多项式中次薮最高的项的;欠数,叫做这个多项式的次数。三、整式1、单项式和多

3、项式统称为整式。2、单项式或多项式都是整式。3、整式不一定是单项式。4、整式不一定是多项式。5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。四、整式的幅1、整式加减的理论根据是:去括号法则合并同类项法则,以及乘法分配率。2、几个整式相加激,关键是正确地运用去括号法则,然后准确合并同类项。3、几个整式相加演的一般步骁:< 1)列出代数式:用括号把每个整式括起来,再用加瀛号连接3< 2)按去括号法则去括号。< 3)合并同类项。4、代数式求值的一般步骤;< 1)代数式化简。(2)代入计算<3)对于某些特殊的代数式,可采用“整体代入进行计算。五、同翩哥的乘法1

4、、n个相同因式(或因数)a相乘:记作a)读作a的n次方(W);其中a为底数,n为 指数,a0的结果叫做幕。2、底数相同的幕叫做同底数嘉。3、同底数早乘法的运算法则:同底数幕相乘,底数不变,指数相加。即:4、此法则也可以逆用,即,尸=式。5、开始底数不相同的幕的乘法,如果可以化成底数相同的幕的乘法,先化成同底数幕再运 用法则。六、墓的乘方1、累的乘方是指几个相同的幕相乘,(公)表示n个2r相乘。2、军的乘方运算法则:幕的乘方,底数不变,指数相乘。(a),=M此法则也可以逆用,即:a" = (a) = (a) "o七、积的秉方1、积的乘方是指底数是乘积形式的乘方。2、积的乘方运

5、算法则;积的乘方,等于把积中的每个因式分别乘方,然后把所得的累相乘。 即(独*=aV.3、此法则也可以逆用,即;aV = (ab) %八、三种“臬的运算法则力异同点1、共同点:(1)法则中的底数不变,只对指数做运算。(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多 项式兀(3)对于含有3个或3个以上的运算,法则仍然成立。2、不同点:(1)同底数黑相乘是指数相加。(2)嘉的暴方是指数相乘。(3)积的乘方是每个因式分别乘方,再将结果相乘。九、同领票的除法1、同底数臬的除法法则:同底数嘉相除,底数不变,指数相减,即:aTa-a-(#0)。2、此法则也可以逆用,即;尸=

6、aTa* (声0)。十、本谶反I、零指数号的意义;任何不等于。的数的。次累都等于1,即:41 3升0)。1、任何不等于零的数的一P次累,等于这个数的P次黑的倒数,即:”-厂=±9工0)注:在同底数窠的除法、零指数零、负指数桌中底数不为06十二、整加球法<-)的弑醺式才睐1、单项式乘法法则;单项式与单项式相乘,把它们的系数、相同字母的累分别相乘,其余 字母连同它的指数不变,作为积的因式。2、系数相乘时,注意符号。3、相同字母的幕相乘时,底数不变,指数相加。4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。5、单项式乘以单项式的结果仍是单项式。6、单项式的

7、乘法法则对于三个或三个以上的单项式相乘同样适用。(二)啊项式才睐1、单顼式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式 中的每一项,再把所得的积相加。即:> (a+b+c) =jfta-hnb-hnco2、运算时注意积的符号j多项式的每一项都包括它前面的符号。3、积是一个多项式,其项数与多项式的项数相同。4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。(三)多项式与多项式相乘1、多项式与多项式乘法法则:多项式与多项式相乘,先用"多项式的每一项乘另一个多 项式的每一项,再把所得的积相加。即:("n)(a+b)=ma+

8、3na+nb。2、多项式与多项式相乘,必须做到不重不漏3相乘时,要按一定的顺序进行,即一个多项 式的每一项乘以另一个多项式的每一项6在未合并同类项之前,积的项数等于两个多项式项 数的积&3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号 得负”。4、运算结果中有同类项的要合并同类项“5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式 简化运算;(x+a) (x+b) =-+ (a+b) 冥+ab。十三、平方差公式1、(a+b) (a-b)=a-bS即:两数和与这两数差的积,等于它们的平万之差。2、平方差公式中的a、b可以是单项

9、式,也可以是多项式。3、平方差公式可以逆用,即:a* (a+b) (a-b).4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成(b) Ta-b)的形式,然后看片与b:是否容易计算。十四、完全平方公式1、(。+协2=/十2。+/=(。一/=/一2次7十分:即;两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。2、公式中的4b可以是单项式,也可以是多项式。3、摹握理解完全平方公式的变形公式:1) 1 +,= (a+, - 2ab=(a - 尸 + 2动=YQ + b)。(a犷(2) (a + d): = (a-6): + Aab(3)而=尸4、完全平方式:

10、我们把形如:3+ 24 +昭:/-2乩+炉:的二次三项式称作完全平方式。5、当计算较大数的平方时,利用完全平方公式可以简化数的运算。6、完全平方公式可以逆用,即;f+246+/=(。+与,/一+/=(。-方)2.十五、整式的除法<-)单项式除以单项式的法则1、单项式除以单项式的法则:一般地,单项式相除,把系数、同底数累分另肺躲后,作为 商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。2、根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系教、相同字母与不 相同字母三部分分别进行考虑。(二)多项式除以单项式的法则1、多项式除以单项式的法即 多项式除以单项式

11、,先把这个多项式的每一项分别除以单项 式,再把所得的商相加°用字母表示为:3 + 3+=。+加+ 5一帆十(:一次 2、多项式除以单项式,注意多顼式各顼都包括前面的符号。第二®相殛与曲拱余角余角补角-补角角两线相交一对顶角同位角平三线八角内错角g同旁内角I |平行线的判定旗 平行线一1平行线的性质1尺炮作图一、平行线:在同一平面内,不相交的两条直线叫做平行线。若两条直线只有一个公共点,我们称这两条直线为相交线。二、也与卜角1、如果两个角的和是直角,那么称这两个角互为余角, 简称为互余,称苴卬一个角是另一 个角的余角。2、如果两个角的和是平角,那么称这两个角互为补角,简称为互

12、补,称其中一个角是另一 个角的补角。3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无 关4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。5、余角和补角的性质用数学语言可表示为:(1> /l + N2 = 90°(180°),Ni + N3=90°(180°)网/2 = /3(同角的余角(或补角)相(2)/1+/2 = 90。(1800)23+/4=900(180<>>且4=N4,则N2=/3 (等角的余角(或补角)相等)。6、余角和补角的性质是证明两角相等的一个重要方法。三、对顶龟

13、1、两条直残相交成四个角,其中不相邻的两个角是对顶角。2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。3、对顶角的性质:对顶角相等。4、对顶角的性质在今后的推理说明中应用非常广泛,它是证明两个角相等的依据及重要桥 梁。5、对顶角是从位置上定义的,对顶角一定相等,但相等的两不一定是对顶角。四、垂线及其性质1、垂线:两条直线相交成直角时,叫做互相垂直,苴中一条叫做另一条的垂线。2、垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直,性质Z:连接直线外一点与直线上各点的所有线段中,垂线段最矩。五、同位角、内错角、同旁内角1、两条直线被第三条直线所截,形成了 8个角。2、同

14、位角;两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对 角叫做同便角。3、内错角:两个角都在两条直线之间,并且在第三条直线1截线)的两旁,这样的一对角 叫做内错角。4、同旁内龟:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对 角叫同旁内角。5、这三种龟只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。六、并涌1、补角、余角、对顶角、同位角、内错角、同旁内弟六类角都是对两角来说的。2、余角、补角只有数量上的关系,与其位置无关。3、同位角、内错角、同等内角只有位署上的关系,与其数量无关。4、对顶角既有数量关系,又有位置关系。1、同位角相等,

15、两直线平行。2、内错角相等,两直线平行。3、同旁内角互补,两直线平行©4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行.5、在同一平面内,如果两条直线都垂直于第三条直线那么这两条直线平行。1、两直线平行,同位角相等。2、两直线平行,内错角相等。3、两直线平行,同旁内角互补。4、平行线的判定与性质具备互逆的特征,其关系如下:同七角相等 内近角相等 同再内免互补亚直堤立行司匕凭相等,内万定相等司考内免互补在应用时要正确区分积极向上的题设和结论。九、咫酢线囹唯1、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。2、尺规作图是最基本、最常见的作图方法;通常叫基本作图。

16、3、尺双作图中直尺的功能是:(1)在两点间连接一条线段5(2)将线段向西方延长。4、尺规作图中圆规的功能是;<1)以任意一点为圆心,任意长为半径作一个圆,(2)以任意一点为圆心,任意长为半径画一段弧;5、熟练掌握以下作图语言:作射线乂义,在射线上截取xx=xx$(3)在身挡戋XX上依次截取XX=XX=XX5(4)以点乂为圆心, XX为半径画弧,交XX于点乂力(b)分刑以点X、点X为圆心,以XX、XX为半径作如,两邨相交于点X;(6)过点乂和点X画直线XX (或画射线乂乂力(7)在NX XX的外部(或内部)画/XXX=/XXX;6、在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过

17、程,只用一句话概括 叙述就可以了。(1)画名据XX二XX ,(2)画NX XX:/X XX ;第三章三角形三角形三边关系Z-三角形I三角形内角和定理Ir角平分线三条重要线段 中线I高线全等图形的概念全等三角形的性质SSS三角形<SAS全等三角可全等三角形的判定ASAAASHL (适用于改)全等三角形的应用一>利用全等三角形测距离(作三角形一、1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号 表小O2、项点是A、E、C的三角形,记作“妞CH读作“三角形ABC”。3、组成三角形的三条线段叫做三角形的边,即边耻、BC、M,有时也用a, b, c来表示, 顶点

18、A所对的边比用金表示,边K、AB分别用b,。来表示jd、/A、/B、/C为AABC的三个内角。二、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。用字母可表示为 a+b>c, a+c >b, b+c>a.; a-b<g a-c<b, b-c< a。2、判断三条线段a, b, c能否组成三角形:(1)当a+b>c, a+c>b, b+c>a同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。3、确定第三边未知边)的取值范围时,它的取值范围为大于两边的差而小干两边的和,三、三

19、角形中三角的关系1、三角形内角和定理;三角形的三个内角的和等于180、2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形J(2)直角三角形,印有一个内角是直角的三角形,我们通常用“Rt”表示“直角三角形二 其中直角NC所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。 注:直角三角形的性质:直角三角形的两个锐角互余。<3)钝角三角形,即有一个内角是钝角的三角形。3、判定一个三角形的形状主要看三角形中最大角的度数。4、直角三角形的面积等于两直角边乘积的一半。5、任意一个三角形都具备六个元素,即三条边和三个内角。都具有三边关系和三内角之

20、和 为比。:的性质。6、三角形内角和定理包含一个等式,它是我们列出有关角的方程的重要等量关系。四、三角形的三条重要线段1、三角形的三条重要线段是指三角形的角平分线、中线和高线、2、三角形的角平分线:(1)三角形的一个内角的平分线与这个角的对边相交,这个畲的顶点和交点之间的线段叫 做三角形的角平分线。(2)任意三角形都有三条角平分线,并且它们相交于三角形内一点。3、三角形的中线:(1)在三角形中,连接一个顶点与它对边中点的线段,叫做宓个三角形的中线。(2)三角形有三条中线,它们相交于三角形内一点°4、三角形的高线:(1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段

21、叫做三角形的高线简称为三角形的高。<2)任意三角形看睛三条高线,它们所在的直线相交于一点区别相同中线平分对边三条中线交于三角形内部(D都是名锻(2)都从顶点画出(3)所在直线才皎于一点角平分线平分内角三条角平分线交于三角表内部高线垂直于对 边或其延 长线)锐角三扇形:三条高线都在三角形内部亶角三房形;其中两条恰好是直角边钝角三龟形:其中两条在三角表外都五、全等图形1、两个能够重合的图形称为全等图形。2、全等图形的性晾全等图形的形状和X小都相同。3、全等酬的面积或周长1浙睁。4、判昕两个图形是否全攀寸,形状相同与大小相等两者玦一不可。5、全等图形在平移、旅转、折盘过程中仍然全等。6、全等翻

22、中的对应由和对应线段都分别相等q1、把一个图形分剧成两个或几个全答图形叫则巴一个图形全等分割。2、对一个图形全等分割:CD百先要现票分析该酬"发现图形的构成特点;<2)其次要大胆登试,敢于动手,必要时可采用计篝、交流,讨论等方法完成。七、全等三角形 1、能然重合的两个三角光是全等三角形,用符号“口”连接,读作“全等于二 2、用“丝”隹接的两个全等三角形,表示对应顶点,的字母写在对应的位凿上。3、全等三再形的性质:全等三角形的对应边、对应角相等,这是今后证明边、角相等的里 要依据。4、两个全等三角形,准砒判定对应边、对应角,即找准对应顶点是关键。八、全等三角形的判定1、三边对应相

23、等的两个三角形全等,简写为“边边边''或"S5S42、两角矛佗们的夹边对应相等的两个三角形全等,简写为“角边角"或"ASA”。3、两角和苴中一角的对边时应相等的两个三角形全等,简写为“角角边”或“AA3”。4、两边矛佗们的夹角却应相等的两个三角形全等,简写为边角边"或"SAS”。5、注意以下内容<1)三角形全等的判定条件中必须是三个元素,并且一定有一组边对应相等。(2)三边对应相等,两边及夹角对应相等,一边及任意两角对应相等,这样的两个三角形 全等。(3)两边及其中一边的对角对应相等不能判定两三角形全等。6、熟练运用认下内

24、容<1)熟缚运用三角形判定条件,是解决此类题的关键。(2)已知“SS”,可考虑A:第三边,即“SSS"; B:夹角,即“SASL已知“5记,可考虑A:另一角,即“AAS”或“附匕B:夹角的另一边,即“SAS”。(4)已知"AA”,可考虑A:任意一边,即“AAS”或7、三角形的稳定性:根据三角形全等的判定方法(SSS)可知;只要三角形三边的长度确定 了,这个三角形的形状和大小就完全确定了,三角形的这个性质叫做三角形的稳定性。九、作三角形1、作图题的一般步骤:<1)已知,即将条件具体化;<2)求作,即具体叙述所作图形应满足的条件j(3)分析,即寻找作图方法的途

25、径(通常是画出草图为<4)作法,即根据分析所得的作图方法,作出正式图形,并依次叙述作图过程:(5)证明,即验证所作图形的正确性(通常省略不写)。2、熟练以下三种三角形的作法及依据。<1)已知三角形的两边及其夹角,作三角形。(2)已知三角形的两角及其夹边,作三角形。(3)已知三角形的三边,作三角形。十、加形错测距离1、利用三房形全等测距离,实际上是利用已有的全等三角形,或构造出全等三角形,运用 全等三角形的性质对应边才眸),把较难测量或无法测量的距离转化成已知线段或较容易 测量的线段的长度,从而得到被测距离。2、运用全等三角形解决实际问题的步骤;(1)先明确实际问题应该用哪些几何知道

26、解决J(2)根据实际问题抽象出几何图形;(3)结合图形和题意分析已知条件3(4)我到解决问题的选径。十一、直角三角形全等的条件1、在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、 直角边”或“血”。2、“肛是直角三角形特有的判定条件,对非直角三角形是不成立的;3、书写时要规范,即在三角形前面必须加上“Rt”字样。第四章变量之间的关系自变量声量的概念 Y L因变量变量之间的关系Y(表格法I关系式法灰星的表达方法I评度时间图象1图象法-路程时间图象一、变II、自变量、囚变量1、在某一变化过程中,不断变化的量叫做变量。2、如果一个变量y随另一个变量x的变化而变化,则把x叫

27、做自变量,y叫做因变量。3、自变量与因变量的确定:(1)自变量是先发生变化的量3因变量是后发生变化的量。(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。(3)利用具体情境来体会两者的依存关系。二、1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。(1)首先要明确表格中所列的是哪两个量,(2)分清哪一个量为变量/哪一个量为因变量5(3)结合实际情境理解它们之间的关系。2、绘制表格表示两个变量之间关系(1)列表时苜先要确定m行、含列的栏目;(2)一般有两行,第一行表示自变量,第二行表示因变量;(3)写出栏目名称,有时还根据问题内容写上单位;(4)在

28、第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取信。(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量 与自变量之间的关系。三、关系式1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代 数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式32、关系式的写法不同于方程,必须将因变量单独写在等号的左边。3、求两个变量之间关系式的途径:CD将自变量和因变量看作两个未知数,根据题意列出关于云知数的方程,并最终写成关 系式的形式。(2)根据表格中所列的数据写出变量之间的关系式5(3)根据实际I可题中的基本数量关系写出

29、变量之间的关系式:(4)根据图象写出与之对应的变量之间的关系式。4、关系式的应用;利用关系式能根据任何一个自变量的值求出相应的因变量的值j(2)同样也可以根据任何一个因变量的值求出相应的自变量的值:(3)根据关系式求值的实质就是解一元一次方程(求目变量的值)或求代数式的值(求因 变量的值)。四、酶1、图象是刻画变量之间关系的又一重要方法,其特点是非常亘观、形象,2、图彖能清筵地反映口因变量随白变量变化而变化的情况。3、用图象表示变量之间的关系时,通常用水平方向的数轴(又称横轴)上的点、表示自变量, 用竖直方向的数轴(又称纵轴)上的点表示因变量。4、图象上的点:(1)对于某个具体图象上的点,过该

30、点作横轴的垂线,垂足的数据即为该点自变量的取值;(2)过该点作纵轴的垂线,垂足的数据即为该点相应因变量的值,(3)由自变量的值求对应的因变量的值时,可在横轴上找到表示巨变量的值的点,过这个 点作横轴的垂线与图象交于某点,再过交点作纵轴的垂线,纵轴上垂足所表示的颜据即为因 变量的相应情。C4)把以上作垂线的过程过来可由因变量的值求得相应的自变量的值。5、图象理解CD理解图象上某一个点的意义,一要看横轴、级轴分别表示哪个变量;(2)看该点所对应的横轴、纵轴的位置(数据尢Lt还可以得到随着自变量的变化,因变量的变化趋势°1、弄清哪一条轴(通常是纵轴)表示速度,哪一条轴(通常是横轴)表示时间

31、32、准确读懂不同走向的线所表示的意义;(1)上升的线:从左向右呈上升状的线,其代表速度增加3(2)水平的线:与水平轴(横轴)平行的线,其代表匀速行驶或静止5<3)下降的线:从左向右呈下降状的线,其代表速度海小。】、弄清哪一条轴(通常是纵轴)表示路程,哪一条轴(通常是横轴)表示时间;2、准确读懂不同走向的线所表示的意义:(1)上升的线:从左向右呈上升状的线,其代表匀速远离起点(或已知定点);(2)水平的线:与水平轴(横轴)平行的线,其代表静止;(3)下降的线:从左向右呈下降状的线,其代表反向运动返回起点(或已知定点)。七、三旅量之蹴系的表达方法与特点:表达方法特 点表格法多个变量可以同时

32、出现在同一张表格中关系式法准确地反映了因变量与自变蚩的数值关系图象法直观、形象地给出了因变量随自变量的变化趋势第五章生活中的轴对称轴对称图形轴对称分类一I轴对称角平分线 轴对称实例线段的套直平分线I等腰三角形生活中的他对称I等边三角形轴对称的性质 轴对称的性质i镜面对称的性质图案设计轴对称的应用YI镶边与剪纸一、酬?1、如果一个图形沿一条直线折盘后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。2、理解轴对称图形要抓住以下几点、:(1)指一个图形J(2)存在一条直线(对称轴力(3)图形襁直线分成的两部分互相重合:(4)轴对称图形的时称轴有的只有一条,有的则存在多条

33、;(5)线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形;二、1、对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称, 这条直线就是对称轴。可以说成:这两个图形关于某条直线对称°2、理解轴对称应注意;(2)沿某一条直线时折后能够完全重合5(3)轴对称的两个图形一定是全等形,但两个全等的图形不一定是,如寸称图形5(4)对称轴»直线而不是线段;轴对称图形版寸称区别是一个图形自身的对称特性是两个图形之间的对称关系对称轴可能不止一条对称轴只有一条共同点沿某条直线对折后都能够互相重合如果轴对称的两个图形看作一个螫体,那么它就是一个轴对称图形J如果

34、把铀对称图形分成两部分(两个图形3那么这两部分关于这条对称轴度拟寸称。三、角平分线的性用1、角平分线所在的直线是该角的对称轴。2、性质:角平分线上的点到这个角的两边的距离相等。四、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂 绦2、性质:线段垂直平分线上的点到这条线底两端点的距离相等。五、等腰三角形1、有两条边中晤的三角形叫像等腰三角形J2、相等的两条边叫做腰;另一边叫儆房边;3、两聘的夹房叫做顶角,腰与底边的夹角叫做底角:4、三条边都车彤?的三角形也是等腰三角形,5、等履三角形是轴对称图形,有一条对称轴(等边三角形除外),苴底边上的高或顶角

35、的平 分线,或底边上的中线所在的直线都是它的时称轴。6、等腰三角形的三条重势搬不是它的对称JE6,它们所在的直线才是等腰三角形的对称轴。7、等股三箱形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”。8、“三线合一”是等艘三角影所特有的性康,一般三角形不具备这一重要性质。9、“三线合一”是等膳三角形特有的性质,是指其顶角平分线,底立上的高和中线,这三线, 并非其他。10、等股三角形的两个底角相答,而写成“等边对洋角 11、判定一个三角形是等腰三角形常用的两种方法;(1)两条边相等的三角形是等腰三角形J(2)如果一个三角膨有两个角相等,那么它们所对的边也相等相等,简写为“等角对

36、等边二六、等三角形1、等边三角形是指三边者就瞪的三角形,又称正三角形,是最特殊的三角形.2、等边三角形是底与H财晤的筝腰三角形,所以等边三角形具备等胰三角形的所有性质°3、等边三角形有三条对称轴,三角形的高、角平分线和中线所在的直线都是它的对称轴。4、等边三角形的三边都相三个内角都是60、定义性病等腹三 角形ZK . 有两边 相等的三角的K两腰相等,两民角相等。2、顶即1»):-2X底角。层角二(180二顶角)/2>3、顶角妒分线、底边上的中线和高“三纸合一乙4、轴对称图形,有一条对称轴。I三<R三 边形正物 善用叫角i、,三边都相答的 三角形11、三边都相等,

37、三内角相等j且每个内角都等于60;。2、具有等腹三角形的所有性质。3、轴对称图形,有三条对称轴。 七、轴对称的性质1、两个区沿一条直线对折后,能够重合的点称为对应点(定称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。3、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分°4、如果两个图形关于某条直线对称,那么对应线段、对应角都相等° 5、类似地,轴对称图形的性质有;<1)轴对称图形对应点所连的线段被对称轴垂直平分。(2)轴对称图形的对应线段、对应角相等。(3)根据轴对称图形的性质可求作轴对称图形的对

38、应点、对应线段或对应角,并由此能补 全轴对称图形。髅计1、作出简单平面图形经过轴对称后的图形,实际上是轴对称图形的性底的灵活运用。2、作出简单平面图形经过轴对称后的图形的步骤:(1)首先要确定一个简单平面图形上的几个特殊点;(2)然后利用轴对称的性质,作出其相应的对称点(对应点所连的线段被对称轴垂直平分)o(3)分别连接箕对称点,则可得其对称图形。M表达方式(以点M为例:<1)过点M作对称轴/的垂线,垂足为M<2)延长MA到M到,使M后MA,则点H就是点M关于直线/的对称点。<3)在复杂的作图中,也可以叙述为:作出点儿关于直线,的对称点M .4、在运用轴对称设计图案时,就注意

39、以下几点;1)要有明确的设计意图3<2)创意要新颖独特;<3)设计出的图案要符合要求;<4)能清楚地表达自己的设计意图和制作过程。|5、图案的设计除采用对称的手段外,通常还综合采用旋转、倒置、重复等手段和形式。6、设计的图案要美观、大方,积极向上,反映时代特色。九、镜面对若1、镜面对称的有关性质:(1)任何一个平面图形(物体)在子中的像与它是可以重合的。因此,一个轴对称图形 在镜子中的像仍是轴对称图形。(2)若一个平面图形正对镜面,则其左(右)侧在镜中的像是其右(左)侧;<3)若一个平面图形(物体)垂直于镜面摆放,则靠近镜面的部分,其像也靠近面;2、关于数字。、1、3、8在镜面中像的两个结论:(1)如果写数字的纸条垂直于镜面摆放,则纸条上写的。、1、3、8所成的像与原来的数字 完全一样。(2)如果纸条正对演面摆放,则纸条上写的0、1、8这三个数字在演中的像和原来的额字 完全一样。3、像与物体到镜面的距离相等。4、像与物体的对应点连线被镜面垂直平分。5、由镜卬的时间来判断真实时间是近几年来中考的一个热点,时间的表示有用一般数字表 示的,也有直接用钟表来表示的。在判断时大家要注意灵活利用镜面对称的头呻来加以解 次。第六章做率初步必然事件事件4不可能事件不确定事件概率等可能性游戏的公平性概率的定义I概率J几何概率设计

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论