非金属材料及成形_第1页
非金属材料及成形_第2页
非金属材料及成形_第3页
非金属材料及成形_第4页
非金属材料及成形_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第5章 非金属材料及成形5.1概述    非金属材料是指除金属材料之外的所有材料的总称。随着高新科学技术的发展,使用材料的领域越来越广,所提出的要求也越来越高。对于要求密度小、耐腐蚀、电绝缘、减振消声和耐高温等性能的工程构件,传统的金属材料已难以胜任。而非金属材料这些性能却有着各自优势。另外,单一金属或非金属材料无法实现的性能,可通过复合材料得以实现。    非金属材料的来源十分广泛,大多成形工艺简单,生产成本较低,已经广泛应用于轻工、家电、建材、机电等各行各业中,目前在工程领域应用最多的非金属材料主要是塑料、橡胶、陶瓷及各种复合材料

2、。5.1.1非金属材料的发展    人类社会的发展在很大程度上取决于生产力的发展,生产力水平的高低往往以劳动工具为代表,而劳动工具的进步又离不开材料的发展。早在一百万年以前,人类开始用石头做工具,标志着人类进入旧石器时代。大约一万年以前,人类知道对石头进行加工,使之成为精致的器皿或工具,从而标志着人类进入新石器时代。在新石器时代,人类开始用皮毛遮身。8000年前,中国就开始用蚕丝做衣服,4500年前,印度人开始种植棉花,这些都标志着人类使用材料促进文明进步。在新石器时代,人类已发明了用黏土成形,经火烧固化而成为陶器。陶器不但成为器皿,而且成为装饰品,历史上虽无陶器

3、时代的名称,但其对人类文明的贡献却不可估量。这是人类有史以来第一次使用自然界存在的物质(黏土和水),发明制造了自然界没有的物品(陶器)。陶器可以盛水、煮食物。水在100oC沸腾而保持恒温,食物的营养成分不但不被破坏,而且更易于消化吸收。人类的饮食生活习性由烧烤发展为蒸煮,人类自身生存状况有了彻底改观。因此,甚至有史学家认为陶器是人类最伟大的发明。时至今日,满足人类居住的建筑用材料,仍以非金属材料为主。随着5000年前的青铜、3000年前的铁以及后来钢等金属材料的出现,人类在十八世纪发明了蒸汽机,十九世纪发明了电动机、平炉和转炉炼钢。金属材料使人类农业繁荣并逐步走向工业时代,把人类带进了现代物质

4、文明。当随着有机化学的发展,人造合成纤维的发明是人类改造自然材料的又一里程碑。目前各种有机合成材料几乎渗透到人类日常生活的各个领域。高性能的陶瓷材料以及各种复合材料支撑了航空航天事业的不断发展,使人类的文明走向宇宙。以单晶硅、激光材料、光导纤维为代表的新材料的出现,使人类仅用五十年就进入了信息时代。所以非金属材料对人类社会文明的进步发挥着重大的作用。在现代科学技术的推动下,材料科学发展迅速,材料的种类日益增多,不同功能的新材料不断涌现,原有材料的性能不断改善与提高,以满足人类未来的各种使用需求,因此,材料特别是品种繁多的新型非金属材料是未来高科技的基石、先进工业生产的支柱和人类文明发展的基础。

5、5.1.2非金属材料的分类    目前,非金属材料通常以其组成的主要成分分为无机非金属材料、有机高分子材料及复合材料三大类。    典型无机非金属材料:水泥、玻璃、陶瓷。典型有机高分子材料:塑料、橡胶、化纤。    典型复合材料:无机非金属材料基复合材料、有机高分子材料基复合材料、金属基复合材料。5.1.3非金属材料的选择及应用1非金属材料的选择    由于非金属材料的种类繁多,不同类型、成分、性能及不同成形方法的非金属材料在工程实际中的使用和选择,是个很复杂的过程。设计师和

6、工程师在选择非金属材料时,主要应考虑以下的因素:1)满足使用性能和工艺性能;2)防止出现失效事故;3)经济性;4)考虑可持续发展选材。   此外,材料的选择是一个系统工程。在一个部件或者装置中,所选用的各种材料要能够在一起使用,而不能因相互作用而降低对方的性能。   因此,在大多数情况下,材料的选择是一个反复权衡的复杂过程。在某种意义上,其重要性不亚于材料本身的研究开发。2非金属材料的应用领域    过去,非金属结构材料传统的应用领域主要是建筑、轻工、纺织、家电、仪器仪表、农业等,在工业上主要是装饰件、密封件、刀具、轮胎等。

7、但是现在,非金属结构材料在工业领域的广泛应用正以前所未有的速度发展。随着各种非金属材料合成和制备技术不断提高和完善,非金属材料的产量和性能均不断提高。有关专家预测,很多传统上由金属制造的零件、部件、结构件,将会被工程塑料、工程陶瓷及复合材料等非金属材料所取代。例如,汽车的车身可采用工程塑料或复合材料,每千克工程塑料可代替45千克钢铁,而且可整体成形,因而成本和油耗将进一步降低。由于原料充足,可以设计、制造出无穷的新产品,非金属结构材料在工业领域的应用前景十分广阔。    另外,各种新型非金属材料,其应用领域远比非金属结构材料的应用领域广阔得多,特别是现代高科技密集

8、的领域。在微电子、信息通信、航空航天、生物工程、环境保护、新能源等领域中应用了大量的新型非金属材料,其中最具代表的有单晶硅、超导材料、固体激光材料、飞船高温防护材料、仿生材料、环保材料、隐形纳米材料等等。由于篇幅所限,本章的主要内容为非金属结构材料及其成形。5.2工程塑料及成形    塑料是一类以天然或合成树脂为主要成分,在一定温度、压力条件下经塑制成形,并在常温下能保持形状不变的高分子工程材料。    塑料具有一定的耐热、耐寒及良好的力学、电气、化学等综合性能,可以替代非铁金属及其合金,作为结构材料用来制造机器零件或工程结构。塑料以

9、其质轻、耐蚀、电绝缘,具有良好的耐磨和减磨性,良好的成形工艺性等特性以及有丰富的资源而成为应用很广泛的高分子材料,在工农业、交通运输业、国防工业及日常生活中均得到广泛应用。5.2.1工程塑料的组成和性能l. 塑料的组成    一般说来,塑料是由树脂和若干种添加剂 (如填充剂、增塑剂、润滑剂、着色剂、稳定剂、固化剂和阻燃剂)组成。1)树脂 树脂是塑料的主要组分,它是塑料中能起粘结作用的部分,并使塑料具有成形性能。2)填充剂 其主要作用是:改变塑料的某些性能,降低塑料成本,扩大塑料的应用范围。3)增塑剂 增塑剂是用来提高树脂可塑性的。常用增塑剂如氧化石蜡、磷酸脂类等。

10、4)润滑剂 润滑剂是为防止塑料在成形过程中粘模而加人的添加剂。5)着色剂 着色剂是使塑料制品具有美丽色彩的有机或无机颜料。6)固化剂 固化剂是热固性塑料所必需的添加剂,目的在于促使线型结构转变为体型结构,成形后获得坚硬的塑料制品。7)稳定剂 稳定剂又称防老化添加剂,其主要作用是提高某些塑料的受热或光照稳定性。8)其他添加剂 塑料添加剂除上述几项外还有阻燃剂(如氧化锑等)、抗静电剂、发泡剂、溶剂、稀释剂等。2. 工程塑料的性能1)力学性能    力学性能是决定工程塑料使用范围的重要指标之一,工程塑料具有较高的强度、良好的塑性、韧性和耐磨性,可代替金属制造机器零件或构

11、件,尤其是某些工程塑料的比强度(材料拉伸强度与密度之比)很高,大大超过金属的比强度(如玻璃纤维增强塑料),可制造减轻自重的各种结构件。5.2.2工程塑料的分类和应用1. 塑料的分类1)按树脂受热的行为分为热塑性与热固性塑料    热塑性塑料:其分子结构主要为线型或支链线型分子结构,工艺特点是受热软化、熔融,具有可塑性,冷却后坚硬;再受热又可软化,可重复使用而其基本性能不变;可溶解在一定的溶剂中。成形工艺简便、形式多种多样,生产效率高,可直接注射、挤压、吹塑成形。如聚乙烯、聚丙烯、ABS等。热固性塑料:具有体型分子结构,热固性塑料一次成形后,质地坚硬、性质稳定,不再

12、溶于溶剂中,受热不变形,不软化,不能回收。成形工艺复杂,大多只能采用模压或层压法,生产效率低。如酚醛塑料、环氧塑料等。5.2.3工程塑料的成形1. 塑料成形加工技术分类    塑料的成形,按各种成形加工技术在生产中所属成形加工阶段的不同,可将其划分为一次成形技术、二次成形技术和二次加工技术三个类别。2. 塑料的一次成形技术    塑料的一次成形是指将粉状、粒状、纤维状和碎屑状固体塑料、树脂溶液或糊状等各种形态的塑料原料制成所需形状和尺寸的制品或半制品的技术。这类成形方法很多,目前生产上广泛采用注射、挤出、压制、浇铸等方法成形。注射成形

13、主要应用于热塑性塑料和流动性较大的热固性塑料,可以成形几何形状复杂、尺寸精确及带各种嵌件的塑料制品,如电视机外壳、日常生活用品等。目前注射制品约占塑料制品总量的30%。近年来新的注射技术如反应注射、双色注射、发泡注射等的发展和应用,为注射成形提供了更加广阔的应用前景。2)挤出成形    挤出成形又称挤塑成形或挤出模塑,其成形过程如图5-3所示。首先将粒状或粉状的塑料加入到挤出机(与注射机相似)料斗中,然后由旋转的挤出机螺杆送到加热区,逐渐熔融呈粘流态,然后在挤压系统作用下,塑料熔体通过具有一定形状的挤出模具(机头)口模而成形为所需断面形状的连续型材。3)压制成形&

14、#160;   压制成形是指主要依靠外压的作用,实现成形物料造型的一次成形技术。压制成形是塑料加工中最传统的工艺方法,广泛用于热固性塑料的成形加工。根据成形物料的性状和加工设备及工艺的特点,压制成形可分为模压成形和层压成形。模压成形(图5-4a)是将粉状、粒状、碎屑状或纤维状的热固性塑料原料放人模具中,然后闭模加热加压而使其在模具中成形并硬化,最后脱模取出塑料制件,其所用设备为液压机、旋压机等。3.塑料的二次成形技术    塑料的二次成形是指在一定条件下将塑料半制品(如型材或坯件等)通过再次成形加工,以获得制品的最终形样的技术。目前生产上采用的

15、有中空吹塑成形、热成形和薄膜的双向拉伸成形等几种二次成形技术。1)中空吹塑成形    吹塑成形是制造空心塑料制品的成形方法,是借助气体压力使闭合在模腔内尚处于半熔融态的型坯吹胀成为中空制品的二次成形技术。中空吹塑又分为注射吹塑和挤出吹塑,注射吹塑是用注射成形法先将塑料制成有底型坯,再把型坯移入吹塑模内进行吹塑成形。图5-6所示为注射吹塑成形过程。首先由注射机在高压下将熔融塑料注入型坯模具内并在芯模上形成适宜尺寸、形状和质量的管状有底型坯,所用模芯为一端封闭的管状物,压缩空气可从开口端通入并从管壁上所开的多个小孔逸出。型坯成形后,打开注射模将留在芯模上的热型坯移入吹

16、塑模内,合模后从模芯通道吹入0.20.7Mpa的压缩空气,型坯立即被吹胀而脱离模芯并紧贴吹塑模的型腔壁上,并在空气压力下进行冷却定型,然后开模取出制品。5.4工业陶瓷及成形    陶瓷是由天然或人工合成的粉状矿物原料和化工原料组成,经过成形和高温烧结制成的,由金属和非金属元素构成化合物反应生成的多晶体相固体材料。5.4.1陶瓷的组织结构及性能1陶瓷的组织结构    普通陶瓷的典型组织是由晶体相、玻璃相和气体相组成的。特种陶瓷的原料纯度高,组织比较单一。如含Al203在95%以上氧化铝陶瓷,其组织主要由Al203晶体和少量气体相组成。2

17、陶瓷的性能1)陶瓷的力学性能    陶瓷的弹性模量E一般都较高,极不容易变形。有的先进陶瓷有很好的弹性,可以制作成陶瓷弹簧。陶瓷的硬度很高,绝大多数陶瓷的硬度远高于金属。陶瓷的耐磨性好,是制造各种特殊要求的易损零、部件的好材料。例如用碳化硅陶瓷制造的各种泵类的机械密封环,寿命很长,可以用到整台机器报废为止。陶瓷的抗拉强度低,但抗弯强度较高,抗压强度更高,一般比抗拉强度高一个数量级。陶瓷材料一般具有优于金属的高温强度,在1000oC以上的高温下陶瓷仍能保持其室温下的强度,而且高温抗蠕变能力强,是工程上常用的耐高温材料。传统陶瓷在室温几乎没有塑性。近年来还发现一些陶瓷

18、具有超塑性,断裂前的应变可达到 300左右。传统陶瓷的韧性低、脆性大。而许多先进陶瓷材料则是既坚且韧,如增韧氧化锆瓷就非常坚韧。2)陶瓷的物理性能 热性能    陶瓷的线膨胀系数较小,比金属低得多;陶瓷的热传导主要靠原子的热振动来完成的,不同陶瓷材料的导热性能不同,有的是良好的绝热材料,有的则是良好的导热材料,如氮化硼和碳化硅陶瓷。热稳定性陶瓷材料在温度急剧变化时具有抵抗破坏的能力。热膨胀系数大、导热性差、韧性低的材料热稳定性不高。多数陶瓷的导热性差、韧性低,故热稳定性差。但也有些陶瓷具有高的热稳定性,如碳化硅等。 导电性    多数

19、陶瓷具有良好的绝缘性能,但有些陶瓷具有一定的导电性,如压电陶瓷、超导陶瓷等。 光学特性    陶瓷一般是不透明的,随着科技发展,目前已研制出了如制造固体激光器材料,光导纤维材料、光存储材料等陶瓷新品种3)陶瓷的化学性能    陶瓷的结构非常稳定,通常情况下不可能同介质中的氧发生反应,不但室温下不会氧化,即使1000oC以上的高温表5-6 常见纤维增强复合材料与钢等金属的性能材料名称密度 (g/cm2)抗拉强度(x103MPa)拉伸弹性模量 (x105MPa)比强度(x106m)比模量(x108m)钢7.81.032.100.130.2

20、7铝2.800.470.750.170.27钛4.500.961.140.210.25玻璃钢2.001.060.400.530.21高强碳纤维/环氧复合材料1.451.501.401.030.97高模石墨纤维/环氧复合材料1.601.072.400.671.50芳纶/环氧复合材料1.401.400.801.000.57硼纤维/环氧复合材料2.101.382.100.661.00硼纤维/铝复合材料2.651.002.000.380.75也不会氧化,并且对酸、碱、盐等的腐蚀有较强的抵抗能力,也能抵抗熔融金属(如铝、铜等)的侵蚀。5.4.2陶瓷的分类及应用    陶瓷按

21、组成可分为硅酸盐陶瓷、氧化物陶瓷、非氧化物陶瓷(氮化物陶瓷、碳化物陶瓷和复合陶瓷);按性能可分为普通陶瓷(如日用陶瓷、建筑陶瓷、化工陶瓷等)和特种陶瓷(如结构陶瓷、功能陶瓷);按用途可分为日用瓷、艺术瓷、建筑瓷、工程陶瓷等。5.5复合材料及成形5.5.1 复合材料的定义、分类和性能1复合材料定义复合材料是由两种或两种以上的组分材料通过适当的制备工艺复合在一起的新材料,其既保留原组分材料的特性,又具有原单一组分材料所无法获得的或更优异的特性。从理论上说,金属材料、陶瓷材料或高分子材料相互之间或同种材料之间均可复合形成新的复合材料。事实上也是如此,如在高分子材料/高分子材料、陶瓷材料/高分子材料、

22、金属材料/高分子材料、金属材料/金属材料、陶瓷材料/金属材料、陶瓷材料/陶瓷材料之间的复合都已获得许多种高性能新型复合材料。复合材料通常由基体材料和增强材料两部分组成,基体一般选用强度韧性好的材料,如聚合物、橡胶、金属等,而增强材料则选用高强度、高弹性模量的材料,如玻璃纤维、碳纤维和硼纤维等。4复合材料的性能1)比强度和比模量大复合材料的突出优点是比强度(强度/密度)与比模量(弹性模量/密度)高,比强度和比模量是度量材料承载能力的一个指标,比强度愈高,同一零件的自重愈小;比模量愈高,零件的刚度愈大。表5-6 列出了常见纤维增强复合材料与钢等金属的性能比较。因此,这些特性为某些要求自重轻和刚度好

23、的零件提供了理想的材料。2)抗疲劳性能好多数金属的疲劳极限是抗拉强度的40%50%,而碳纤维聚酯树脂复合材料则可达70%80%。3)耐热性高碳纤维增强树脂复合材料的耐热性比树脂基体有明显提高,而金属基复合材料在耐热性方面更显示出其优越性,碳化硅纤维、氧化铝纤维与陶瓷复合,在空气中能耐1200oC1400oC高温,要比所有超高温合金的耐热性高出100oC以上。用于汽车发动机,使用温度可高达1370oC4)减振性能好结构的自振频率除与结构本身形状有关外,还与材料的比模量的平方根成正比。高的自振频率避免了工作状态下共振而引起的早期破坏。而且复合材料中纤维与基体界面具有吸振能力,因此其振动阻尼很高。5

24、)高韧性和抗热冲击性,在PMC和CMC中尤为重要;6)绝缘、导电和导热性玻璃纤维增强塑料是一种优良的电气绝缘材料,用于制造仪表、电机与电器中的绝缘零部件,这种材料还不受电磁作用,不反射无线电波,微波透过性良好,还具有耐烧蚀性、耐辐照性,可用于制造飞机、导弹和地面雷达罩。金属基复合材料具有良好的导电和导热性能,可以使局部的高温热源和集中电荷很快扩散消失,有利于解决热气流冲击和雷击问题。7)耐烧蚀性、耐磨损8)特殊的光、电、磁性能等。复合材料除具有上述性能外,还具有可设计性,可以根据对材料的性能要求,在基体、增强材料的类型和含量上进行选择,并进行适当的制备与加工。在制品制造时,复合材料还适合一次整

25、体成形,具备良好的加工性能。5.5.2复合材料的应用    复合材料的基体可以是聚合物(树脂)、金属材料和无机非金属材料,增强材料可以是各类纤维、晶须和颗粒。为了便于介绍,以下主要介绍几种已经得到广泛应用的各类典型复合材料。1. 聚合物基复合材料    在结构复合材料中发展最早、研究最多、应用最广和用量最大的是聚合物基复合材料(PMC)。众所周知,现代复合材料就是以20世纪40年代玻璃纤维增强塑料(玻璃钢)的出现为标志。经过60余年的发展,已经研究开发出了具有各种优异性能及应用的聚合物基复合材料,包括玻璃纤维增强、碳纤维增强、芳纶纤维

26、、硼纤维、碳化硅纤维等增强复合材料。其中为了获得更高比强度、比模量的复合材料,除主要用于玻璃钢的酚醛树脂、环氧树脂和聚酯外,研究与开发了许多具有耐热性好的基体树脂,如聚酰亚胺(PI)、聚苯硫醚(PPS)、聚醚砜(PES)和聚醚醚酮(PEEK)等热塑性树脂。1)玻璃钢(玻璃纤维增强塑料,GFRP)    GFRP是一类采用玻璃纤维增强以酚醛树脂、环氧树脂、聚酯树脂等热固性树脂以及聚酰胺、聚丙烯等热塑性树脂为基体的聚合物基复合材料。GFRP是物美价廉的复合材料。GFRP的突出特点是密度低、比强度高。其密度为1.62.0g/cm3,比轻金属铝还低;而比强度要比最高强度的

27、合金钢还高3倍,“玻璃钢”的名称就是由此而来。因此,玻璃钢在需要轻质高强材料的航空航天工业首先得到广泛应用,在波音B-747飞机的机内、外结构件中玻璃钢的使用面积达到了2700m2,如雷达罩、机舱门、燃料箱、行李架和地板等。由于火箭结构材料不但要求具有高比强度和比模量,而且还要求材料的耐烧蚀性能,玻璃钢用于航天工业中做火箭发动机壳体、喷管。在现代汽车工业中为了减轻自重、降低油耗,玻璃钢也得到了大量应用,如汽车车身、保险杠、车门、挡泥板、灯罩以及内部装饰件等。    除了比强度高外,玻璃钢还具有良好的耐腐蚀性能,在酸、碱、海水,甚至有机溶剂等介质中都很稳定,耐腐蚀性

28、超过了不锈钢。因此,在石油化工工业中玻璃钢得到了广泛应用,如玻璃钢制成的贮罐、容器、管道、洗涤器、冷却塔等。值得一提的是采用玻璃钢制作的体育用品也越来越多,大到快艇、帆船、滑雪车,小到自行车赛车、滑雪板等,应有尽有。此外,玻璃钢具有透光、隔热、隔音和防腐等性能,因而可作为轻质建筑材料,如用于建筑工程的各种玻璃钢型材,这是玻璃钢应用最广泛的领域。2)碳纤维增强聚合物基复合材料(CFRP)    在要求高模量的结构件中,往往采用高模量的纤维,如碳纤维、B纤维或SiC纤维等增强。其中应用最广泛的是碳纤维增强聚合物基复合材料(CFRP)。CFRP密度更低,具有比玻璃钢更高

29、的比强度和比模量,比强度是高强度钢和钛合金的56倍,是玻璃钢的2倍,比模量是这些材料的34倍。因此CFRP应用在航天工业中,如航天飞机有效载荷门、副翼、垂直尾翼、主起落架门、内部压力容器等,使航天飞机减重达2吨之多。此外在空间站大型结构桁架及太阳能电池支架也采用CFRP。在航空工业,CFRP首先在军用飞机中得到应用,如美国F-14、F-16、F-18上主翼外壳、后翼、水平和垂直尾翼等,军用直升飞机主旋翼和机身等。现在甚至在研究全机身CFRP的战斗机。同样,在民用飞机中也在大量采用CFRP,如波音B-757、B-777上的阻流板、方向舵、升降舵、内外副翼等。由于碳纤维的价格高,CFRP主要应用于

30、航空航天领域。但随着碳纤维的研究开发工作的深入,碳纤维价格在不断降低,因此在玻璃钢应用的一些领域也开始采用更轻、更强和刚度更好的CFRP。如体育用品中的网球拍、高尔夫球杆、钓鱼杆,F-1方程式赛车车身。同样,为减轻车体重量,降低油耗,提高车速,汽车的部分部件也开始采用CFRP。甚至在大型混凝土结构遭受一定的破坏后(如地震),用CFRP片材进行修复,可节省大量资金。5.6纳米材料5.6.1纳米材料的定义和特性1. 纳米材料的定义    纳米(nm)和米、微米等单位一样,是一种长度单位,一纳米等于十的负九次方米,约比化学键长大一个数量级。纳米科技是研究由尺寸在0.11

31、00nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。可衍生出纳米电子学、机械学、生物学、材料学、加工学等。    纳米材料是指三维空间尺度至少有一维处于纳米量级(1-100nm)的材料,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。由于其组成单元的尺度小,界面占用相当大的成分。而且原子排列互不相同,界面周围的晶格结构互不相关,从而构成与晶态、非晶态均不同的一种新的结构状态。因此,纳米材料具有多种特点,这就导致由纳米微粒构成的体系出现了不同于通常的大块宏观材料体系的许多特殊性质。纳米体系使人们认识自然又进入

32、一个新的层次,它是联系原子、分子和宏观体系的中间环节,是人们过去从未探索过的新领域,实际上由纳米粒子组成的材料向宏观体系演变过程中,在结构上有序度的变化,在状态上的非平衡性质,使体系的性质产生很大的差别,对纳米材料的研究将使人们从宏观到微观的过渡有更深入的认识。2. 纳米材料的特性    在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。纳米相材料跟普通的金属、

33、陶瓷,和其他固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。其常规纳米材料中的基本颗粒直径不到100nm,包含的原子不到几万个。一个直径为3nm的原子团包含大约900个原子,几乎是英文里一个句点的百万分之一,这个比例相当于一条300多米长的轮船跟整个地球的比例。 当材料的尺寸进入纳米级,材料本身便会出现以下奇异的崭新的物理性能:1)量子尺寸效应    当纳米粒子的尺寸下降到某一值时,金属粒子费米面附近电子能级由准连续变为离散能级;并且纳米半导体微粒存在不连续的最高被占据的分子轨道能级和最低未被占据的分子轨

34、道能级,使能隙变宽的现象,被称为纳米材料的量子尺寸效应。 在纳米粒子中处于分立的量子化能级中的电子的波动性带来了纳米粒子的一系列特殊性质,如高的光学非线性,特异的催化和光催化性质等。当纳米粒子的尺寸与光波波长,德布罗意波长,超导态的相干长度或与磁场穿透深度相当或更小时,晶体周期性边界条件将被破坏,非晶态纳米微粒的颗粒表面层附近的原子密度减小,导致声、光、电、磁、热力学等特性出现异常。如光吸收显著增加,超导相向正常相转变,金属熔点降低,增强微波吸收等。利用等离子共振频移随颗粒尺寸变化的性质,可以改变颗粒尺寸,控制吸收边的位移,制造具有一定频宽的微波吸收纳米材料,用于电磁波屏蔽、隐型飞机等。由于纳

35、米粒子细化,晶界数量大幅度的增加,可使材料的强度、韧性和超塑性大为提高。其结构颗粒对光,机械应力和电的反应完全不同于微米或毫米级的结构颗粒,使纳米材料在宏观上显示出许多奇妙的特性,例如:纳米相铜强度比普通铜高5倍;纳米相陶瓷是摔不碎的,这与大颗粒组成的普通陶瓷完全不一样。纳米材料从根本上改变了材料的结构,可望得到诸如高强度金属和合金、塑性陶瓷、金属间化合物以及性能特异的原子规模复合材料等新一代材料,为克服材料科学研究领域中长期未能解决的问题开拓了新的途径。2)表面效应    纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性

36、质上的变化。如图5¬-23所示:从图中可见,随纳米粒子粒径的减小,表面原子所占比例急剧增加。当粒径为1nm时,纳米材料几乎全部由单层表面原子组成。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其它原子结合。3)纳米材料的体积效应    由于纳米粒子体积极小,所包含的原子数很少,相应的质量极小。因此,许多现象就不能用通常有无限个原子的块状物质的性质加以说明,这种特殊的现象通常称之为体积效应。随纳米粒子的直径减小,能级间隔增大,电子移动困难,电阻率增大,从而使能隙变宽,金属导体将变为绝缘体。4)量子隧道效应

37、60;   微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。超导材料定义具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。超导材料特性超导材料和常规导电材料的性能有很大的不同。主要有以下性能。零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持

38、续电流”已多次在实验中观察到。完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量有以下 3个基本临界参量。临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)

39、的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H01-(T/Tc)2,式中H0为0K时的临界磁场。临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic称为临界电流密度,以Jc表示。超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰

40、物理学家H.开默林昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 超导材料分类超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶瓷。超导元素:在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为9.26K。电工中实际应用的

41、主要是铌和铅(Pb,Tc=7.201K),已用于制造超导交流电力电缆、高Q值谐振腔等。 合金材料: 超导元素加入某些其他元素作合金成分, 可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为10.8K,Hc为8.7特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。其性能是Nb-33Ti,Tc=9.3K,Hc11.0特;Nb-60Ti,Tc=9.3K,Hc=12特(4.2K)。目前铌钛合金是用于78特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc9.9K,Hc=12.4特(4.2

42、K);Nb-70Ti-5Ta的性能是,Tc=9.8K,Hc=12.8特。超导化合物:超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=18.1K,Hc=24.5特。其他重要的超导化合物还有V3Ga,Tc=16.8K,Hc=24特;Nb3Al,Tc=18.8K,Hc=30特。超导陶瓷:20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧钡铜氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡钇铜氧化物中发现Tc处于液氮温区有超导电性,使超导陶瓷成为极有发展前景的超导材

43、料。 超导材料应用超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。到80年代,超导材料的应用主要有:利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(功率可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利

44、用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快1020倍,功耗只有四分之一。 超导材料研究历史1911年,荷兰物理学家昂尼斯(18531926)发现,水银的电阻率并不象预料的那样随温度降低逐渐减小,而是当温度降到4.15K附近时,水银的电阻突然降到零。某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。超导体由正常态转变为超导态的温度称为这种物质的转变温度(或临界温度)TC。现已发现大多数金属元素以及数以千计的合金、化合物都在不同条件下显示出超导性。如钨的转变温度为0.012K,

45、锌为0.75K,铝为1.196K,铅为7.193K。超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的42K提高到铌三锗的2322K,才提高了19K。 1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。 1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;

46、紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到402K。 1987年1月初,日本川崎国立分子研究所将超导温度提高到43K;不久日本综合电子研究所又将超导温度提高到46K和53K。中国科学院物理研究所由赵忠贤、陈立泉领导的研究组,获得了486K的锶镧铜氧系超导体,并看到这类物质有在70K发生转变的迹象。2月15日美国报道朱经武、吴茂昆获得了98K超导体。2月20日,中国也宣布发现100K以上超导体。3月3日,日本宣布发现123K超导体。3月12日中国北京大学成功地用液氮进行超导磁悬浮实验。3月27日美国华裔科学家又发现

47、在氧化物超导材料中有转变温度为240K的超导迹象。很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14温度下存在超导迹象。高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用。氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1100。液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一。 超导科学研究1.非常规超导体磁通动力学和超导机理 主要研究混合态区域的磁通线运动的机理,不可逆线性质、起因及其与磁场和温度的关系,临界电流密度与磁场和温度的依赖关系及

48、各向异性。超导机理研究侧重于研究正常态在强磁场下的磁阻、霍尔效应、涨落效应、费米面的性质以及T<Tc时用强磁场破坏超导达到正常态时的输运性质等。对有望表现出高温超导电性的体系象有机超导体等以及在强电方面具有广阔应用前景的低温超导体等,也将开展其在强磁场下的性质研究。 2.强磁场下的低维凝聚态特性研究 低维性使得低维体系表现出三维体系所没有的特性。低维不稳定性导致了多种有序相。强磁场是揭示低维凝聚态特性的有效手段。主要研究内容包括:有机铁磁性的结构和来源;有机(包括富勒烯)超导体的机理和磁性;强磁场下二维电子气中非线性元激发的特异属性;低维磁性材料的相变和磁相互作用;有机导体在磁场中的输运

49、和载流子特性;磁场中的能带结构和费米面特征等。 3.强磁场下的半导体材料的光、电等特性 强磁场技术对半导体科学的发展愈益变得重要,因为在各种物理因素中,外磁场是唯一在保持晶体结构不变的情况下改变动量空间对称性的物理因素,因而在半导体能带结构研究以及元激发及其互作用研究中,磁场有着特别重要的作用。通过对强磁场下半导体材料的光、电等特性开展实验研究,可进一步理解和把握半导体的光学、电学等物理性质,从而为制造具有各种功能的半导体器件并发展高科技作基础性探索。 4.强磁场下极微细尺度中的物理问题 极微细尺度体系中出现许多常规材料不具备的新现象和奇异特性,这与这类材料的微结构特别是电子结构密切相关。强磁

50、场为研究极微细尺度体系的电子态和输运特性提供强有力的手段,不但能进一步揭示这类材料在常规条件下难以出现的奇异现象,而且为在更深层次下认识其物理特性提供丰富的科学信息。主要研究强磁场下极微细尺度金属、半导体等的电子输运、电子局域和关联特性;量子尺寸效应、量子限域效应、小尺寸效应和表面、界面效应;以及极微细尺度氧化物、碳化物和氮化物的光学特性及能隙精细结构等。 5.强磁场化学 强磁场对化学反应电子自旋和核自旋的作用,可导致相应化学键的松弛,造成新键生成的有利条件,诱发一般条件下无法实现的物理化学变化,获得原来无法制备的新材料和新化合物。强磁场化学是应用基础性很强的新领域,有一系列理论课题和广泛应用

51、前景。近期可开展水和有机溶剂的磁化及机理研究以及强磁场诱发新化学反应研究等。 6.磁场下的生物学、生物医学研究等 磁体科学和技术 强磁场的价值在于对物理学知识有重要贡献。八十年代的一个概念上的重要进展是量子霍尔效应和分数量子霍耳效应的发现。这是在强磁场下研究二维电子气的输运现象时发现的(获85年诺贝尔奖)。量子霍尔效应和分数量子霍尔效应的发现激起物理学家探索其起源的热情,并在建立电阻的自然基准,精确测定基本物理常数e,h和精细结构常数(e2/h(0c等应用方面,已显示巨大意义。高温超导电性机理的最终揭示在很大程度上也将依赖于人们在强磁场下对高温超导体性能的探索。 熟悉物理学史的人都清楚,由固体

52、物理学演化为凝聚态物理学,其重要标志就在于其研究对象的日益扩大,从周期结构延伸到非周期结构,从三维晶体拓宽到低维和高维,乃至分数维体系。这些新对象展示了大量新的特性和物理现象,物理机理与传统的也大不相同。这些新对象的产生以及对新效应、新现象的解释使得凝聚态物理学得以不断的丰富和发展。在此过程中,极端条件一直起着至关重要的作用,因为极端条件往往使得某些因素突出出来而同时抑制其它因素,从而使原本很复杂的过程变得较为简单,有利于直接了解物理本质。 相对于其它极端条件,强磁场有其自身的特色。强磁场的作用是改变一个系统的物理状态,即改变角动量(自旋)和带电粒子的轨道运动,因此,也就改变了物理系统的状态。

53、正是在这点上,强磁场不同于物理学的其他一些比较昂贵的手段,如中子源和同步加速器,它们没有改变所研究系统的物理状态。磁场可以产生新的物理环境,并导致新的特性,而这种新的物理环境和新的物理特性在没有磁场时是不存在的。低温也能导致新的物理状态,如超导电性和相变,但强磁场极不同于低温,它比低温更有效,这是因为磁场使带电的和磁性粒子的远动和能量量子化,并破坏时间反演对称性,使它们具有更独特的性质。 强磁场可以在保持晶体结构不变的情况下改变动量空间的对称性,这对固体的能带结构以及元激发及其互作用等研究是非常重要的。固体复杂的费米面结构正是利用强磁场使得电子和空穴在特定方向上的自由运动从而导致磁化和磁阻的振

54、荡这一原理而得以证实的。固体中的费米面结构及特征研究一直是凝聚态物理学领域中的前沿课题。当今凝聚态物理基础研究的许多重大热点都离不开强磁场这一极端条件,甚至很多是以强磁场下的研究作为基础。如波色凝聚只发生在动量空间,要在实空间中观察到此现象必需在非均匀的强磁场中才得以可能。又如高温超导的机理问题、量子霍尔效应研究、纳米材料和介观物体中的物理问题、巨磁阻效应的物理起因、有机铁磁性的结构和来源、有机(包括富勒烯超导体的机理和磁性、低维磁性材料的相变和磁相互作用、固体中的能带结构和费米面特征以及元激发及其互作用研究等等,强磁场下的研究工作将有助于对这些问题的正确认识和揭示,从而促进凝聚态物理学的进一

55、步发展和完善。 带电粒子象电子、离子等以及某些极性分子的运动在磁场特别是在强磁场中会产生根本性变化。因此,研究强磁场对化学反应过程、表面催化过程、材料特别是磁性材料的生成过程、生物效应以及液晶的生成过程等的影响,有可能取得新的发现,产生交叉学科的新课题。强磁场应用于材料科学为新的功能材料的开发另辟新径,这方面的工作在国外备受重视,在国内也开始有所要求。高温超导体也正是因为在未来的强电领域中蕴藏着不可估量的应用前景才引起科技界乃至各国政府的高度重视。因此,强磁场下的物理、化学等研究,无论是从基础研究的角度还是从应用角度考虑都具有非常重要的科学和技术上的意义,通过这一研究,不仅有助于将当代的基础性

56、研究向更深层次开拓,而且还会对国民经济的发展起着重要的推动作用。储氢合金20世纪60年代,材料王国里出现了能储存氢的金属和合金,统称为储氢合金(hydrogen storage metal),这些金属或合金具有很强的捕捉氢的能力,它可以在一定的温度和压力条件下,氢分子在合金(或金属)中先分解成单个的原子,而这些氢原子便“见缝插针”般地进入合金原子之间的缝隙中,并与合金进行化学反应生成金属氢化物(metal hydrides),外在表现为大量“吸收”氢气,同时放出大量热量。而当对这些金属氢化物进行加热时,它们又会发生分解反应,氢原子又能结合成氢分子释放出来,而且伴随有明显的吸热效应。别看储氢合金

57、的金属原子之间缝隙不大,但储氢本领却比氢气瓶的本领可大多了,因为它能像海绵吸水一样把钢瓶内的氢气全部吸尽。具体来说,相当于储氢钢瓶重量1/3的储氢合金,其体积不到钢瓶体积的1/10,但储氢量却是相同温度和压力条件下气态氢的1000倍,由此可见,储氢合金不愧是一种极其简便易行的理想储氢方法。采用储氢合金来储氢,不仅具有储氢量大、能耗低,工作压力低、使用方便的特点,而且可免去庞大的钢制容器,从而使存储和运输方便而且安全。目前储氢合金主要包括有钛系、锆系、铁系及稀土系储氢合金。其主要用途包括以下几个方面:(1)氢气分离、回收和净化材料。化学工业、石油精制以及冶金工业生产中,通常有大量的含氢尾气排出,

58、含氢量有些达到5060%,而目前多是采用排空或者白白的燃烧处理。因此,对这部分加以回收利用,在经济上有巨大的意义。另外,集成电路、半导体器件、电子材料和光纤等产业中,需要超高纯氢体。利用储氢合金对氢原子有特殊的亲和力,而对其他气体杂质择优排斥的特性,即利用储氢合金具有只选择吸收氢和捕获不纯杂质的功能,不但可以回收废气中的氢,而且可以使氢纯度高于 99.9999%以上,价格便宜、安全,具有十分重要的社会效益和经济意义。(2)制冷或采暖设备材料。由于储氢合金具有在吸氢化学反应时放出大量热,而在放氢时吸收大量热的特性,因此,人们可以利用储氢合金的这种放热吸热循环,可进行热的储存和传输,制造制冷或采暖

59、设备。美国和日本竞相采用储氢合金制成太阳能和废热利用的冷暖房,其原理就是利用储氢合金在吸氢时的放热反应和释放氢时的吸热反应。我国北京有色金属研究总院则利用储氢合金储放氢过程的吸放热循环效应,制造了一台可以制冷到77K的制冷机,该机器可用于工业、医疗等行业需要低温环境的场合。(3)镍氢充电电池。由于目前大量使用的镍镉电池(NiCd)中的镉有毒,使废电池处理复杂,环境受到污染,因此它将逐渐被用储氢合金做成的镍氢充电电池(NiMH)所替代。从电池电量来讲,相同大小的镍氢充电电池电量比镍镉电池高约1.52倍,且无镉的污染,现已经广泛地用于移动通讯、笔记本计算机等各种小型便携式的电子设备。目前,更大容量的镍氢电池已经开始用于汽油/电动混合动力汽车上,利用镍氢电池可快速充放电过程,当汽车高速行驶时,发电机所发的电可储存在车载的镍氢电池中,当车低速行驶时,通常会比高速行驶状态消耗大量的汽油,因此为了节省汽油,此时可以利用车载的镍氢电池驱动电动机来代替内燃机工作,这样既保证了汽车正常行驶,又节省了大量的汽油,因此,混合动力车相对传统意义上的汽车具有更大的市场潜力,世界各国目前都在加紧这方面的研究。某些金属具有很强的捕捉氢的能力,在一定的温度和压力条件下,这些金属能够大量“吸收”氢气,反应生成金属氢化物,同时放出热量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论